Files
OpenFOAM-12/applications/solvers/multiphase/multiphaseEulerFoam/phaseSystems/phaseSystem/phaseSystem.C
Will Bainbridge ba130ec083 multiphase: Rationalised alphaContactAngle handling
Alpha contact angle boundaries are now specified in the following way
for multiphase solvers (i.e., multiphaseInterFoam,
compressibleMultiphaseInterFoam, and multiphaseEulerFoam):

   boundaryField
   {
       wall
       {
           type            alphaContactAngle;
           contactAngleProperties
           {
               water
               {
                   // Constant contact angle
                   theta0 90;
               }
               oil
               {
                   // Dynamic contact angle
                   theta0 90;
                   uTheta 1;
                   thetaA 125;
                   thetaR 85;
               }
           }
           value           uniform 0;
       }
   }

All solvers now share the same implementation of the alphaContactAngle
boundary condition and the contact angle correction algorithm.

If alpha contact angle boundary conditions are used they must be
specified for all phases or an error will result. The consistency of the
input will also be checked. The angles given for water in the alpha.air
file must be 180 degrees minus the angles given for air in the
alpha.water file.
2022-01-28 17:25:22 +00:00

831 lines
19 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2022 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseSystem.H"
#include "surfaceTensionModel.H"
#include "surfaceInterpolate.H"
#include "fvcDdt.H"
#include "localEulerDdtScheme.H"
#include "fvcDiv.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "CorrectPhi.H"
#include "fvcMeshPhi.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "correctContactAngle.H"
#include "dragModel.H"
#include "movingWallVelocityFvPatchVectorField.H"
#include "pimpleControl.H"
#include "pressureReference.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(phaseSystem, 0);
defineRunTimeSelectionTable(phaseSystem, dictionary);
}
const Foam::word Foam::phaseSystem::propertiesName("phaseProperties");
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
Foam::tmp<Foam::surfaceScalarField> Foam::phaseSystem::calcPhi
(
const phaseModelList& phaseModels
) const
{
tmp<surfaceScalarField> tmpPhi
(
surfaceScalarField::New
(
"phi",
fvc::interpolate(phaseModels[0])*phaseModels[0].phi()
)
);
for (label phasei=1; phasei<phaseModels.size(); phasei++)
{
tmpPhi.ref() +=
fvc::interpolate(phaseModels[phasei])*phaseModels[phasei].phi();
}
return tmpPhi;
}
Foam::tmp<Foam::volScalarField> Foam::phaseSystem::sumAlphaMoving() const
{
tmp<volScalarField> sumAlphaMoving
(
volScalarField::New
(
"sumAlphaMoving",
movingPhaseModels_[0],
calculatedFvPatchScalarField::typeName
)
);
for
(
label movingPhasei=1;
movingPhasei<movingPhaseModels_.size();
movingPhasei++
)
{
sumAlphaMoving.ref() += movingPhaseModels_[movingPhasei];
}
return sumAlphaMoving;
}
void Foam::phaseSystem::setMixtureU(const volVectorField& Um0)
{
// Calculate the mean velocity difference with respect to Um0
// from the current velocity of the moving phases
volVectorField dUm(Um0);
forAll(movingPhaseModels_, movingPhasei)
{
dUm -=
movingPhaseModels_[movingPhasei]
*movingPhaseModels_[movingPhasei].U();
}
forAll(movingPhaseModels_, movingPhasei)
{
movingPhaseModels_[movingPhasei].URef() += dUm;
}
}
void Foam::phaseSystem::setMixturePhi
(
const PtrList<surfaceScalarField>& alphafs,
const surfaceScalarField& phim0
)
{
// Calculate the mean flux difference with respect to phim0
// from the current flux of the moving phases
surfaceScalarField dphim(phim0);
forAll(movingPhaseModels_, movingPhasei)
{
dphim -=
alphafs[movingPhaseModels_[movingPhasei].index()]
*movingPhaseModels_[movingPhasei].phi();
}
forAll(movingPhaseModels_, movingPhasei)
{
movingPhaseModels_[movingPhasei].phiRef() += dphim;
}
}
Foam::tmp<Foam::surfaceVectorField> Foam::phaseSystem::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::phaseSystem::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
Foam::tmp<Foam::volScalarField> Foam::phaseSystem::K
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(phase1, phase2);
correctContactAngle
(
phase1,
phase2,
phase1.U()().boundaryField(),
deltaN_,
tnHatfv.ref().boundaryFieldRef()
);
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::phaseSystem::phaseSystem
(
const fvMesh& mesh
)
:
IOdictionary
(
IOobject
(
propertiesName,
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
referencePhaseName_(lookupOrDefault("referencePhase", word::null)),
phaseModels_
(
lookup("phases"),
phaseModel::iNew(*this, referencePhaseName_)
),
phi_(calcPhi(phaseModels_)),
dpdt_
(
IOobject
(
"dpdt",
mesh.time().timeName(),
mesh
),
mesh,
dimensionedScalar(dimPressure/dimTime, 0)
),
MRF_(mesh_),
deltaN_
(
"deltaN",
1e-8/pow(average(mesh_.V()), 1.0/3.0)
)
{
// Groupings
label movingPhasei = 0;
label stationaryPhasei = 0;
label anisothermalPhasei = 0;
label multiComponentPhasei = 0;
forAll(phaseModels_, phasei)
{
phaseModel& phase = phaseModels_[phasei];
movingPhasei += !phase.stationary();
stationaryPhasei += phase.stationary();
anisothermalPhasei += !phase.isothermal();
multiComponentPhasei += !phase.pure();
}
movingPhaseModels_.resize(movingPhasei);
stationaryPhaseModels_.resize(stationaryPhasei);
anisothermalPhaseModels_.resize(anisothermalPhasei);
multiComponentPhaseModels_.resize(multiComponentPhasei);
movingPhasei = 0;
stationaryPhasei = 0;
anisothermalPhasei = 0;
multiComponentPhasei = 0;
forAll(phaseModels_, phasei)
{
phaseModel& phase = phaseModels_[phasei];
if (!phase.stationary())
{
movingPhaseModels_.set(movingPhasei++, &phase);
}
if (phase.stationary())
{
stationaryPhaseModels_.set(stationaryPhasei++, &phase);
}
if (!phase.isothermal())
{
anisothermalPhaseModels_.set(anisothermalPhasei++, &phase);
}
if (!phase.pure())
{
multiComponentPhaseModels_.set(multiComponentPhasei++, &phase);
}
}
// Write phi
phi_.writeOpt() = IOobject::AUTO_WRITE;
// Interface compression coefficients
if (this->found("interfaceCompression"))
{
generateInterfacialValues("interfaceCompression", cAlphas_);
}
// Surface tension models
generateInterfacialModels(surfaceTensionModels_);
// Update motion fields
correctKinematics();
// Set the optional reference phase fraction from the other phases
if (referencePhaseName_ != word::null)
{
phaseModel* referencePhasePtr = &phases()[referencePhaseName_];
volScalarField& referenceAlpha = *referencePhasePtr;
referenceAlpha = 1;
forAll(phaseModels_, phasei)
{
if (&phaseModels_[phasei] != referencePhasePtr)
{
referenceAlpha -= phaseModels_[phasei];
}
}
}
forAll(phases(), phasei)
{
const volScalarField& alphai = phases()[phasei];
mesh_.setFluxRequired(alphai.name());
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::phaseSystem::~phaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::phaseSystem::rho() const
{
tmp<volScalarField> rho(movingPhaseModels_[0]*movingPhaseModels_[0].rho());
for
(
label movingPhasei=1;
movingPhasei<movingPhaseModels_.size();
movingPhasei++
)
{
rho.ref() +=
movingPhaseModels_[movingPhasei]
*movingPhaseModels_[movingPhasei].rho();
}
if (stationaryPhaseModels_.empty())
{
return rho;
}
else
{
return rho/sumAlphaMoving();
}
}
Foam::tmp<Foam::volVectorField> Foam::phaseSystem::U() const
{
tmp<volVectorField> U(movingPhaseModels_[0]*movingPhaseModels_[0].U());
for
(
label movingPhasei=1;
movingPhasei<movingPhaseModels_.size();
movingPhasei++
)
{
U.ref() +=
movingPhaseModels_[movingPhasei]
*movingPhaseModels_[movingPhasei].U();
}
if (stationaryPhaseModels_.empty())
{
return U;
}
else
{
return U/sumAlphaMoving();
}
}
Foam::tmp<Foam::volScalarField>
Foam::phaseSystem::sigma(const phaseInterfaceKey& key) const
{
if (surfaceTensionModels_.found(key))
{
return surfaceTensionModels_[key]->sigma();
}
else
{
return volScalarField::New
(
surfaceTensionModel::typeName + ":sigma",
mesh_,
dimensionedScalar(surfaceTensionModel::dimSigma, 0)
);
}
}
Foam::tmp<Foam::scalarField>
Foam::phaseSystem::sigma(const phaseInterfaceKey& key, const label patchi) const
{
if (surfaceTensionModels_.found(key))
{
return surfaceTensionModels_[key]->sigma(patchi);
}
else
{
return tmp<scalarField>
(
new scalarField(mesh_.boundary()[patchi].size(), 0)
);
}
}
Foam::tmp<Foam::volScalarField>
Foam::phaseSystem::nearInterface() const
{
tmp<volScalarField> tnearInt
(
volScalarField::New
(
"nearInterface",
mesh_,
dimensionedScalar(dimless, 0)
)
);
forAll(phases(), phasei)
{
tnearInt.ref() = max
(
tnearInt(),
pos0(phases()[phasei] - 0.01)*pos0(0.99 - phases()[phasei])
);
}
return tnearInt;
}
Foam::tmp<Foam::volScalarField> Foam::phaseSystem::dmdtf
(
const phaseInterfaceKey& key
) const
{
return volScalarField::New
(
IOobject::groupName("dmdtf", phaseInterface(*this, key).name()),
mesh(),
dimensionedScalar(dimDensity/dimTime, 0)
);
}
Foam::PtrList<Foam::volScalarField> Foam::phaseSystem::dmdts() const
{
return PtrList<volScalarField>(phaseModels_.size());
}
Foam::PtrList<Foam::volScalarField> Foam::phaseSystem::d2mdtdps() const
{
return PtrList<volScalarField>(phaseModels_.size());
}
bool Foam::phaseSystem::incompressible() const
{
forAll(phaseModels_, phasei)
{
if (!phaseModels_[phasei].incompressible())
{
return false;
}
}
return true;
}
bool Foam::phaseSystem::implicitPhasePressure(const phaseModel& phase) const
{
return false;
}
bool Foam::phaseSystem::implicitPhasePressure() const
{
return false;
}
Foam::tmp<Foam::surfaceScalarField> Foam::phaseSystem::surfaceTension
(
const phaseModel& phase1
) const
{
tmp<surfaceScalarField> tSurfaceTension
(
surfaceScalarField::New
(
"surfaceTension",
mesh_,
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0), 0)
)
);
forAll(phases(), phasej)
{
const phaseModel& phase2 = phases()[phasej];
if (&phase2 != &phase1)
{
const phaseInterface interface(phase1, phase2);
if (cAlphas_.found(interface))
{
tSurfaceTension.ref() +=
fvc::interpolate(sigma(interface)*K(phase1, phase2))
*(
fvc::interpolate(phase2)*fvc::snGrad(phase1)
- fvc::interpolate(phase1)*fvc::snGrad(phase2)
);
}
}
}
return tSurfaceTension;
}
void Foam::phaseSystem::correct()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correct();
}
}
void Foam::phaseSystem::correctContinuityError()
{
const PtrList<volScalarField> dmdts = this->dmdts();
forAll(movingPhaseModels_, movingPhasei)
{
phaseModel& phase = movingPhaseModels_[movingPhasei];
const volScalarField& alpha = phase;
volScalarField& rho = phase.thermoRef().rho();
volScalarField source
(
volScalarField::New
(
IOobject::groupName("source", phase.name()),
mesh_,
dimensionedScalar(dimDensity/dimTime, 0)
)
);
if (fvModels().addsSupToField(rho.name()))
{
source += fvModels().source(alpha, rho)&rho;
}
if (dmdts.set(phase.index()))
{
source += dmdts[phase.index()];
}
phase.correctContinuityError(source);
}
}
void Foam::phaseSystem::correctKinematics()
{
bool updateDpdt = false;
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctKinematics();
updateDpdt = updateDpdt || phaseModels_[phasei].thermo().dpdt();
}
// Update the pressure time-derivative if required
if (updateDpdt)
{
dpdt_ = fvc::ddt(phaseModels_.begin()().thermo().p());
}
}
void Foam::phaseSystem::correctThermo()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctThermo();
}
}
void Foam::phaseSystem::correctReactions()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctReactions();
}
}
void Foam::phaseSystem::correctSpecies()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctSpecies();
}
}
void Foam::phaseSystem::correctTurbulence()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctTurbulence();
}
}
void Foam::phaseSystem::correctEnergyTransport()
{
forAll(phaseModels_, phasei)
{
phaseModels_[phasei].correctEnergyTransport();
}
}
void Foam::phaseSystem::meshUpdate()
{
if (mesh_.changing())
{
MRF_.update();
// forAll(phaseModels_, phasei)
// {
// phaseModels_[phasei].meshUpdate();
// }
}
}
void Foam::phaseSystem::correctBoundaryFlux()
{
forAll(movingPhases(), movingPhasei)
{
phaseModel& phase = movingPhases()[movingPhasei];
const volVectorField::Boundary& UBf = phase.U()().boundaryField();
FieldField<fvsPatchField, scalar> phiRelBf
(
MRF_.relative(mesh_.Sf().boundaryField() & UBf)
);
surfaceScalarField::Boundary& phiBf = phase.phiRef().boundaryFieldRef();
forAll(mesh_.boundary(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>(phiBf[patchi])
&& !isA<movingWallVelocityFvPatchVectorField>(UBf[patchi])
)
{
phiBf[patchi] == phiRelBf[patchi];
}
}
}
}
void Foam::phaseSystem::correctPhi
(
const volScalarField& p_rgh,
const tmp<volScalarField>& divU,
const pressureReference& pressureReference,
nonOrthogonalSolutionControl& pimple
)
{
forAll(movingPhases(), movingPhasei)
{
phaseModel& phase = movingPhases()[movingPhasei];
volVectorField::Boundary& Ubf = phase.URef().boundaryFieldRef();
surfaceVectorField::Boundary& UfBf = phase.UfRef().boundaryFieldRef();
forAll(Ubf, patchi)
{
if (Ubf[patchi].fixesValue())
{
Ubf[patchi].initEvaluate();
}
}
forAll(Ubf, patchi)
{
if (Ubf[patchi].fixesValue())
{
Ubf[patchi].evaluate();
UfBf[patchi] = Ubf[patchi];
}
}
}
// Correct fixed-flux BCs to be consistent with the velocity BCs
correctBoundaryFlux();
{
phi_ = Zero;
PtrList<surfaceScalarField> alphafs(phaseModels_.size());
forAll(movingPhases(), movingPhasei)
{
phaseModel& phase = movingPhases()[movingPhasei];
const label phasei = phase.index();
const volScalarField& alpha = phase;
alphafs.set(phasei, fvc::interpolate(alpha).ptr());
// Calculate absolute flux
// from the mapped surface velocity
phi_ += alphafs[phasei]*(mesh_.Sf() & phase.Uf());
}
CorrectPhi
(
phi_,
movingPhases()[0].U(),
p_rgh,
// surfaceScalarField("rAUf", fvc::interpolate(rAU())),
dimensionedScalar(dimTime/dimDensity, 1),
divU(),
pressureReference,
pimple
);
// Make the flux relative to the mesh motion
fvc::makeRelative(phi_, movingPhases()[0].U());
setMixturePhi(alphafs, phi_);
}
}
bool Foam::phaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
forAll(phaseModels_, phasei)
{
readOK &= phaseModels_[phasei].read();
}
// models ...
return readOK;
}
else
{
return false;
}
}
Foam::tmp<Foam::volScalarField> Foam::byDt(const volScalarField& vf)
{
if (fv::localEulerDdt::enabled(vf.mesh()))
{
return fv::localEulerDdt::localRDeltaT(vf.mesh())*vf;
}
else
{
return vf/vf.mesh().time().deltaT();
}
}
Foam::tmp<Foam::surfaceScalarField> Foam::byDt(const surfaceScalarField& sf)
{
if (fv::localEulerDdt::enabled(sf.mesh()))
{
return fv::localEulerDdt::localRDeltaTf(sf.mesh())*sf;
}
else
{
return sf/sf.mesh().time().deltaT();
}
}
// ************************************************************************* //