Files
OpenFOAM-12/applications/utilities/mesh/advanced/splitCells/splitCells.C
Henry Weller 19c3e0cb84 polyTopoChange: Removed remnants of unused and deprecated cell and face inflation
The concept of cell and face inflation proved unworkable in general and has been
replaced by the more flexible and robust cell-splitting combined with
conservative interpolative mapping and mesh morphing as appropriate.
2024-03-07 17:49:04 +00:00

715 lines
18 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
splitCells
Description
Utility to split cells with flat faces.
Uses a geometric cut with a plane dividing the edge angle into two so
might produce funny cells. For hexes it will use by default a cut from
edge onto opposite edge (i.e. purely topological).
Options:
- split cells from cellSet only
- use geometric cut for hexes as well
The angle is the angle between two faces sharing an edge as seen from
inside each cell. So a cube will have all angles 90. If you want
to split cells with cell centre outside use e.g. angle 200
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "polyTopoChange.H"
#include "polyTopoChangeMap.H"
#include "polyMesh.H"
#include "cellCuts.H"
#include "cellSet.H"
#include "cellModeller.H"
#include "meshCutter.H"
#include "unitConversion.H"
#include "geomCellLooper.H"
#include "plane.H"
#include "edgeVertex.H"
#include "meshTools.H"
#include "ListOps.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
labelList pack(const boolList& lst)
{
labelList packedLst(lst.size());
label packedI = 0;
forAll(lst, i)
{
if (lst[i])
{
packedLst[packedI++] = i;
}
}
packedLst.setSize(packedI);
return packedLst;
}
scalarField pack(const boolList& lst, const scalarField& elems)
{
scalarField packedElems(lst.size());
label packedI = 0;
forAll(lst, i)
{
if (lst[i])
{
packedElems[packedI++] = elems[i];
}
}
packedElems.setSize(packedI);
return packedElems;
}
// Given sin and cos of max angle between normals calculate whether f0 and f1
// on celli make larger angle. Uses sinAngle only for quadrant detection.
bool largerAngle
(
const primitiveMesh& mesh,
const scalar cosAngle,
const scalar sinAngle,
const label celli,
const label f0, // face label
const label f1,
const vector& n0, // normal at f0
const vector& n1
)
{
const labelList& own = mesh.faceOwner();
bool sameFaceOrder = !((own[f0] == celli) ^ (own[f1] == celli));
// Get cos between faceArea vectors. Correct so flat angle (180 degrees)
// gives -1.
scalar normalCosAngle = n0 & n1;
if (sameFaceOrder)
{
normalCosAngle = -normalCosAngle;
}
// Get cos between faceCentre and normal vector to determine in
// which quadrant angle is. (Is correct for unwarped faces only!)
// Correct for non-outwards pointing normal.
vector c1c0(mesh.faceCentres()[f1] - mesh.faceCentres()[f0]);
c1c0 /= mag(c1c0) + vSmall;
scalar fcCosAngle = n0 & c1c0;
if (own[f0] != celli)
{
fcCosAngle = -fcCosAngle;
}
if (sinAngle < 0.0)
{
// Looking for concave angles (quadrant 3 or 4)
if (fcCosAngle <= 0)
{
// Angle is convex so smaller.
return false;
}
else
{
if (normalCosAngle < cosAngle)
{
return false;
}
else
{
return true;
}
}
}
else
{
// Looking for convex angles (quadrant 1 or 2)
if (fcCosAngle > 0)
{
// Concave angle
return true;
}
else
{
// Convex. Check cos of normal vectors.
if (normalCosAngle > cosAngle)
{
return false;
}
else
{
return true;
}
}
}
}
// Split hex (and hex only) along edgeI creating two prisms
bool splitHex
(
const polyMesh& mesh,
const label celli,
const label edgeI,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
// cut handling functions
edgeVertex ev(mesh);
const edgeList& edges = mesh.edges();
const faceList& faces = mesh.faces();
const edge& e = edges[edgeI];
// Get faces on the side, i.e. faces not using edge but still using one of
// the edge endpoints.
label leftI = -1;
label rightI = -1;
label leftFp = -1;
label rightFp = -1;
const cell& cFaces = mesh.cells()[celli];
forAll(cFaces, i)
{
label facei = cFaces[i];
const face& f = faces[facei];
label fp0 = findIndex(f, e[0]);
label fp1 = findIndex(f, e[1]);
if (fp0 == -1)
{
if (fp1 != -1)
{
// Face uses e[1] but not e[0]
rightI = facei;
rightFp = fp1;
if (leftI != -1)
{
// Have both faces so exit
break;
}
}
}
else
{
if (fp1 != -1)
{
// Face uses both e[1] and e[0]
}
else
{
leftI = facei;
leftFp = fp0;
if (rightI != -1)
{
break;
}
}
}
}
if (leftI == -1 || rightI == -1)
{
FatalErrorInFunction
<< " rightI:" << rightI << abort(FatalError);
}
// Walk two vertices further on faces.
const face& leftF = faces[leftI];
label leftV = leftF[(leftFp + 2) % leftF.size()];
const face& rightF = faces[rightI];
label rightV = rightF[(rightFp + 2) % rightF.size()];
labelList loop(4);
loop[0] = ev.vertToEVert(e[0]);
loop[1] = ev.vertToEVert(leftV);
loop[2] = ev.vertToEVert(rightV);
loop[3] = ev.vertToEVert(e[1]);
scalarField loopWeights(4);
loopWeights[0] = -great;
loopWeights[1] = -great;
loopWeights[2] = -great;
loopWeights[3] = -great;
cutCells.append(celli);
cellLoops.append(loop);
cellEdgeWeights.append(loopWeights);
return true;
}
// Split celli along edgeI with a plane along halfNorm direction.
bool splitCell
(
const polyMesh& mesh,
const geomCellLooper& cellCutter,
const label celli,
const label edgeI,
const vector& halfNorm,
const boolList& vertIsCut,
const boolList& edgeIsCut,
const scalarField& edgeWeight,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
const edge& e = mesh.edges()[edgeI];
vector eVec = e.vec(mesh.points());
eVec /= mag(eVec);
vector planeN = eVec ^ halfNorm;
// Slightly tilt plane to make it not cut edges exactly
// halfway on fully regular meshes (since we want cuts
// to be snapped to vertices)
planeN += 0.01*halfNorm;
planeN /= mag(planeN);
// Define plane through edge
plane cutPlane(mesh.points()[e.start()], planeN);
labelList loop;
scalarField loopWeights;
if
(
cellCutter.cut
(
cutPlane,
celli,
vertIsCut,
edgeIsCut,
edgeWeight,
loop,
loopWeights
)
)
{
// Did manage to cut cell. Copy into overall list.
cutCells.append(celli);
cellLoops.append(loop);
cellEdgeWeights.append(loopWeights);
return true;
}
else
{
return false;
}
}
// Collects cuts for all cells in cellSet
void collectCuts
(
const polyMesh& mesh,
const geomCellLooper& cellCutter,
const bool geometry,
const scalar minCos,
const scalar minSin,
const cellSet& cellsToCut,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
// Get data from mesh
const cellShapeList& cellShapes = mesh.cellShapes();
const labelList& own = mesh.faceOwner();
const labelListList& cellEdges = mesh.cellEdges();
const vectorField& faceAreas = mesh.faceAreas();
// Hex shape
const cellModel& hex = *(cellModeller::lookup("hex"));
// cut handling functions
edgeVertex ev(mesh);
// Cut information per mesh entity
boolList vertIsCut(mesh.nPoints(), false);
boolList edgeIsCut(mesh.nEdges(), false);
scalarField edgeWeight(mesh.nEdges(), -great);
forAllConstIter(cellSet, cellsToCut, iter)
{
const label celli = iter.key();
const labelList& cEdges = cellEdges[celli];
forAll(cEdges, i)
{
label edgeI = cEdges[i];
label f0, f1;
meshTools::getEdgeFaces(mesh, celli, edgeI, f0, f1);
vector n0 = faceAreas[f0];
n0 /= mag(n0);
vector n1 = faceAreas[f1];
n1 /= mag(n1);
if
(
largerAngle
(
mesh,
minCos,
minSin,
celli,
f0,
f1,
n0,
n1
)
)
{
bool splitOk = false;
if (!geometry && cellShapes[celli].model() == hex)
{
splitOk =
splitHex
(
mesh,
celli,
edgeI,
cutCells,
cellLoops,
cellEdgeWeights
);
}
else
{
vector halfNorm;
if ((own[f0] == celli) ^ (own[f1] == celli))
{
// Opposite owner orientation
halfNorm = 0.5*(n0 - n1);
}
else
{
// Faces have same owner or same neighbour so
// normals point in same direction
halfNorm = 0.5*(n0 + n1);
}
splitOk =
splitCell
(
mesh,
cellCutter,
celli,
edgeI,
halfNorm,
vertIsCut,
edgeIsCut,
edgeWeight,
cutCells,
cellLoops,
cellEdgeWeights
);
}
if (splitOk)
{
// Update cell/edge/vertex wise info.
label index = cellLoops.size() - 1;
const labelList& loop = cellLoops[index];
const scalarField& loopWeights = cellEdgeWeights[index];
forAll(loop, i)
{
label cut = loop[i];
if (ev.isEdge(cut))
{
edgeIsCut[ev.getEdge(cut)] = true;
edgeWeight[ev.getEdge(cut)] = loopWeights[i];
}
else
{
vertIsCut[ev.getVertex(cut)] = true;
}
}
// Stop checking edges for this cell.
break;
}
}
}
}
cutCells.shrink();
cellLoops.shrink();
cellEdgeWeights.shrink();
}
int main(int argc, char *argv[])
{
argList::addNote
(
"split cells with flat faces"
);
#include "addOverwriteOption.H"
argList::noParallel();
argList::validArgs.append("edgeAngle [0..360]");
argList::addOption
(
"set",
"name",
"split cells from specified cellSet only"
);
argList::addBoolOption
(
"geometry",
"use geometric cut for hexes as well"
);
argList::addOption
(
"tol",
"scalar", "edge snap tolerance (default 0.2)"
);
#include "setRootCase.H"
#include "createTimeNoFunctionObjects.H"
#include "createPolyMesh.H"
const word oldInstance = mesh.pointsInstance();
const scalar featureAngle = args.argRead<scalar>(1);
const scalar minCos = Foam::cos(degToRad(featureAngle));
const scalar minSin = Foam::sin(degToRad(featureAngle));
const bool readSet = args.optionFound("set");
const bool geometry = args.optionFound("geometry");
const bool overwrite = args.optionFound("overwrite");
const scalar edgeTol = args.optionLookupOrDefault("tol", 0.2);
Info<< "Trying to split cells with internal angles > feature angle\n" << nl
<< "featureAngle : " << featureAngle << nl
<< "edge snapping tol : " << edgeTol << nl;
if (readSet)
{
Info<< "candidate cells : cellSet " << args["set"] << nl;
}
else
{
Info<< "candidate cells : all cells" << nl;
}
if (geometry)
{
Info<< "hex cuts : geometric; using edge tolerance" << nl;
}
else
{
Info<< "hex cuts : topological; cut to opposite edge" << nl;
}
Info<< endl;
// Cell circumference cutter
geomCellLooper cellCutter(mesh);
// Snap all edge cuts close to endpoints to vertices.
geomCellLooper::setSnapTol(edgeTol);
// Candidate cells to cut
cellSet cellsToCut(mesh, "cellsToCut", mesh.nCells()/100);
if (readSet)
{
// Read cells to cut from cellSet
cellSet cells(mesh, args["set"]);
cellsToCut = cells;
}
while (true)
{
if (!readSet)
{
// Try all cells for cutting
for (label celli = 0; celli < mesh.nCells(); celli++)
{
cellsToCut.insert(celli);
}
}
// Cut information per cut cell
DynamicList<label> cutCells(mesh.nCells()/10 + 10);
DynamicList<labelList> cellLoops(mesh.nCells()/10 + 10);
DynamicList<scalarField> cellEdgeWeights(mesh.nCells()/10 + 10);
collectCuts
(
mesh,
cellCutter,
geometry,
minCos,
minSin,
cellsToCut,
cutCells,
cellLoops,
cellEdgeWeights
);
cellSet cutSet(mesh, "cutSet", cutCells.size());
forAll(cutCells, i)
{
cutSet.insert(cutCells[i]);
}
// Gets cuts across cells from cuts through edges.
Info<< "Writing " << cutSet.size() << " cells to cut to cellSet "
<< cutSet.instance()/cutSet.local()/cutSet.name()
<< endl << endl;
cutSet.write();
// Analyze cuts for clashes.
cellCuts cuts
(
mesh,
cutCells, // cells candidate for cutting
cellLoops,
cellEdgeWeights
);
Info<< "Actually cut cells:" << cuts.nLoops() << nl << endl;
if (cuts.nLoops() == 0)
{
break;
}
// Remove cut cells from cellsToCut (Note:only relevant if -readSet)
forAll(cuts.cellLoops(), celli)
{
if (cuts.cellLoops()[celli].size())
{
// Info<< "Removing cut cell " << celli << " from wishlist"
// << endl;
cellsToCut.erase(celli);
}
}
// At least some cells are cut.
polyTopoChange meshMod(mesh);
// Cutting engine
meshCutter cutter(mesh);
// Insert mesh refinement into polyTopoChange.
cutter.setRefinement(cuts, meshMod);
// Do all changes
Info<< "Morphing ..." << endl;
if (!overwrite)
{
runTime++;
}
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh);
// Update stored labels on meshCutter
cutter.topoChange(map());
// Update cellSet
cellsToCut.topoChange(map());
Info<< "Remaining:" << cellsToCut.size() << endl;
// Write resulting mesh
if (overwrite)
{
mesh.setInstance(oldInstance);
}
Info<< "Writing refined morphMesh to time " << runTime.name()
<< endl;
mesh.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //