Files
OpenFOAM-12/applications/utilities/parallelProcessing/reconstructParMesh/reconstructParMesh.C
Henry Weller cc92330253 IOobject, regIOobject: rationalised handling of paths for global and local objects
now all path functions in 'IOobject' are either templated on the type or require a
'globalFile' argument to specify if the type is case global e.g. 'IOdictionary' or
decomposed in parallel, e.g. almost everything else.

The 'global()' and 'globalFile()' virtual functions are now in 'regIOobject'
abstract base-class and overridden as required by derived classes.  The path
functions using 'global()' and 'globalFile()' to differentiate between global
and processor local objects are now also in 'regIOobject' rather than 'IOobject'
to ensure the path returned is absolutely consistent with the type.

Unfortunately there is still potential for unexpected IO behaviour inconsistent
with the global/local nature of the type due to the 'fileOperation' classes
searching the processor directory for case global objects before searching the
case directory.  This approach appears to be a work-around for incomplete
integration with and rationalisation of 'IOobject' but with the changes above it
is no longer necessary.  Unfortunately this "up" searching is baked-in at a low
level and mixed-up with various complex ways to pick the processor directory
name out of the object path and will take some unravelling but this work will
undertaken as time allows.
2021-08-09 21:23:12 +01:00

737 lines
23 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
reconstructParMesh
Description
Reconstructs a mesh.
Writes point/face/cell procAddressing so afterwards reconstructPar can be
used to reconstruct fields.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "IOobjectList.H"
#include "labelIOList.H"
#include "processorPolyPatch.H"
#include "mapAddedPolyMesh.H"
#include "polyMeshAdder.H"
#include "faceCoupleInfo.H"
#include "fvMeshAdder.H"
#include "polyTopoChange.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "regionProperties.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
autoPtr<faceCoupleInfo> determineCoupledFaces
(
const label masterMeshProcStart,
const label masterMeshProcEnd,
const polyMesh& masterMesh,
const label meshToAddProcStart,
const label meshToAddProcEnd,
const polyMesh& meshToAdd
)
{
const polyBoundaryMesh& masterPatches = masterMesh.boundaryMesh();
const polyBoundaryMesh& addPatches = meshToAdd.boundaryMesh();
DynamicList<label> masterFaces
(
masterMesh.nFaces() - masterMesh.nInternalFaces()
);
DynamicList<label> addFaces
(
meshToAdd.nFaces() - meshToAdd.nInternalFaces()
);
for
(
label masterProci = masterMeshProcStart;
masterProci < masterMeshProcEnd;
masterProci++
)
{
for
(
label addProci = meshToAddProcStart;
addProci < meshToAddProcEnd;
addProci++
)
{
const word masterToAddName
(
"procBoundary" + name(masterProci) + "to" + name(addProci)
);
const word addToMasterName
(
"procBoundary" + name(addProci) + "to" + name(masterProci)
);
const label masterToAddID =
masterPatches.findPatchID(masterToAddName);
const label addToMasterID =
addPatches.findPatchID(addToMasterName);
if (masterToAddID != -1 && addToMasterID != -1)
{
const polyPatch& masterPp = masterPatches[masterToAddID];
forAll(masterPp, i)
{
masterFaces.append(masterPp.start() + i);
}
const polyPatch& addPp = addPatches[addToMasterID];
forAll(addPp, i)
{
addFaces.append(addPp.start() + i);
}
}
if ((masterToAddID != -1) != (addToMasterID != -1))
{
const label foundProci =
masterToAddID != -1 ? masterProci : addProci;
const word& foundName =
masterToAddID != -1 ? masterToAddName : addToMasterName;
const label missingProci =
masterToAddID != -1 ? addProci : masterProci;
const word& missingName =
masterToAddID != -1 ? addToMasterName : masterToAddName;
FatalErrorInFunction
<< "Patch " << foundName << " found on processor "
<< foundProci << " but corresponding patch "
<< missingName << " missing on processor "
<< missingProci << exit(FatalError);
}
}
}
masterFaces.shrink();
addFaces.shrink();
return autoPtr<faceCoupleInfo>
(
new faceCoupleInfo
(
masterMesh,
masterFaces,
meshToAdd,
addFaces
)
);
}
void writeCellDistribution
(
Time& runTime,
const fvMesh& masterMesh,
const labelListList& cellProcAddressing
)
{
// Write the decomposition as labelList for use with 'manual'
// decomposition method.
labelIOList cellDecomposition
(
IOobject
(
"cellDecomposition",
masterMesh.facesInstance(),
masterMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
masterMesh.nCells()
);
forAll(cellProcAddressing, proci)
{
const labelList& pCells = cellProcAddressing[proci];
UIndirectList<label>(cellDecomposition, pCells) = proci;
}
cellDecomposition.write();
Info<< nl << "Wrote decomposition to "
<< cellDecomposition.relativeObjectPath()
<< " for use in manual decomposition." << endl;
// Write as volScalarField for postprocessing. Change time to 0
// if was 'constant'
{
const scalar oldTime = runTime.value();
const label oldIndex = runTime.timeIndex();
if (runTime.timeName() == runTime.constant() && oldIndex == 0)
{
runTime.setTime(0, oldIndex+1);
}
volScalarField cellDist
(
IOobject
(
"cellDist",
runTime.timeName(),
masterMesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
masterMesh,
dimensionedScalar(dimless, 0),
extrapolatedCalculatedFvPatchScalarField::typeName
);
forAll(cellDecomposition, celli)
{
cellDist[celli] = cellDecomposition[celli];
}
cellDist.correctBoundaryConditions();
cellDist.write();
Info<< nl << "Wrote decomposition as volScalarField to "
<< cellDist.name() << " for use in postprocessing."
<< endl;
// Restore time
runTime.setTime(oldTime, oldIndex);
}
}
int main(int argc, char *argv[])
{
argList::addNote("reconstruct a mesh");
timeSelector::addOptions(true, true);
argList::noParallel();
argList::addBoolOption
(
"cellDist",
"write cell distribution as a labelList - for use with 'manual' "
"decomposition method or as a volScalarField for post-processing."
);
#include "addRegionOption.H"
#include "addAllRegionsOption.H"
#include "setRootCase.H"
#include "createTime.H"
const wordList regionNames(selectRegionNames(args, runTime));
if (regionNames.size() > 1)
{
Info<< "Operating on regions " << regionNames[0];
for (label regioni = 1; regioni < regionNames.size() - 1; ++ regioni)
{
Info<< ", " << regionNames[regioni];
}
Info<< " and " << regionNames.last() << nl << endl;
}
else if (regionNames[0] != polyMesh::defaultRegion)
{
Info<< "Operating on region " << regionNames[0] << nl << endl;
}
label nProcs = fileHandler().nProcs(args.path());
Info<< "Found " << nProcs << " processor directories" << nl << endl;
// Read all time databases
PtrList<Time> databases(nProcs);
forAll(databases, proci)
{
Info<< "Reading database "
<< args.caseName()/fileName(word("processor") + name(proci))
<< endl;
databases.set
(
proci,
new Time
(
Time::controlDictName,
args.rootPath(),
args.caseName()/fileName(word("processor") + name(proci))
)
);
}
// Use the times list from the master processor
// and select a subset based on the command-line options
instantList timeDirs = timeSelector::select
(
databases[0].times(),
args
);
// Loop over all times
forAll(timeDirs, timeI)
{
// Set time for global database
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << nl << endl;
// Set time for all databases
forAll(databases, proci)
{
databases[proci].setTime(timeDirs[timeI], timeI);
}
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word regionDir =
regionName == polyMesh::defaultRegion
? word::null
: regionName;
IOobject facesIO
(
"faces",
databases[0].timeName(),
regionDir/polyMesh::meshSubDir,
databases[0],
IOobject::NO_READ,
IOobject::NO_WRITE
);
// Problem: faceCompactIOList recognises both 'faceList' and
// 'faceCompactList' so we should be lenient when doing
// typeHeaderOk
if (!facesIO.typeHeaderOk<faceCompactIOList>(false))
{
Info<< "No mesh." << nl << endl;
continue;
}
// Addressing from processor to reconstructed case
labelListList cellProcAddressing(nProcs);
labelListList faceProcAddressing(nProcs);
labelListList pointProcAddressing(nProcs);
labelListList boundaryProcAddressing(nProcs);
// Internal faces on the final reconstructed mesh
label masterInternalFaces;
// Owner addressing on the final reconstructed mesh
labelList masterOwner;
{
// Construct empty mesh.
PtrList<fvMesh> masterMesh(nProcs);
// Read all the meshes
for (label proci=0; proci<nProcs; proci++)
{
masterMesh.set
(
proci,
new fvMesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
IOobject::NO_READ
),
pointField(),
faceList(),
cellList()
)
);
fvMesh meshToAdd
(
IOobject
(
regionName,
databases[proci].timeName(),
databases[proci]
)
);
// Initialise its addressing
cellProcAddressing[proci] = identity(meshToAdd.nCells());
faceProcAddressing[proci] = identity(meshToAdd.nFaces());
pointProcAddressing[proci] = identity(meshToAdd.nPoints());
boundaryProcAddressing[proci] =
identity(meshToAdd.boundaryMesh().size());
// Find shared points/faces
autoPtr<faceCoupleInfo> couples = determineCoupledFaces
(
proci,
proci,
masterMesh[proci],
proci,
proci,
meshToAdd
);
// Add elements to mesh
autoPtr<mapAddedPolyMesh> map = fvMeshAdder::add
(
masterMesh[proci],
meshToAdd,
couples
);
// Added processor
inplaceRenumber
(
map().addedCellMap(),
cellProcAddressing[proci]
);
inplaceRenumber
(
map().addedFaceMap(),
faceProcAddressing[proci]
);
inplaceRenumber
(
map().addedPointMap(),
pointProcAddressing[proci]
);
inplaceRenumber
(
map().addedPatchMap(),
boundaryProcAddressing[proci]
);
}
// Merge the meshes
for (label step=2; step<nProcs*2; step*=2)
{
for (label proci=0; proci<nProcs; proci+=step)
{
label next = proci + step/2;
if(next >= nProcs)
{
continue;
}
Info<< "Merging mesh " << proci << " with " << next
<< endl;
// Find shared points/faces
autoPtr<faceCoupleInfo> couples = determineCoupledFaces
(
proci,
next,
masterMesh[proci],
next,
proci+step,
masterMesh[next]
);
// Add elements to mesh
autoPtr<mapAddedPolyMesh> map = fvMeshAdder::add
(
masterMesh[proci],
masterMesh[next],
couples
);
// Processors that were already in masterMesh
for (label mergedI=proci; mergedI<next; mergedI++)
{
inplaceRenumber
(
map().oldCellMap(),
cellProcAddressing[mergedI]
);
inplaceRenumber
(
map().oldFaceMap(),
faceProcAddressing[mergedI]
);
inplaceRenumber
(
map().oldPointMap(),
pointProcAddressing[mergedI]
);
inplaceRenumber
(
map().oldPatchMap(),
boundaryProcAddressing[mergedI]
);
}
// Added processor
for
(
label addedI=next;
addedI<min(proci+step, nProcs);
addedI++
)
{
inplaceRenumber
(
map().addedCellMap(),
cellProcAddressing[addedI]
);
inplaceRenumber
(
map().addedFaceMap(),
faceProcAddressing[addedI]
);
inplaceRenumber
(
map().addedPointMap(),
pointProcAddressing[addedI]
);
inplaceRenumber
(
map().addedPatchMap(),
boundaryProcAddressing[addedI]
);
}
masterMesh.set(next, nullptr);
}
}
for (label proci=0; proci<nProcs; proci++)
{
Info<< "Reading mesh to add from "
<< databases[proci].caseName()
<< " for time = " << databases[proci].timeName()
<< nl << nl << endl;
}
// Save some properties on the reconstructed mesh
masterInternalFaces = masterMesh[0].nInternalFaces();
masterOwner = masterMesh[0].faceOwner();
Info<< "\nWriting merged mesh to "
<< runTime.path()/runTime.timeName()
<< nl << endl;
if (!masterMesh[0].write())
{
FatalErrorInFunction
<< "Failed writing polyMesh."
<< exit(FatalError);
}
if (args.optionFound("cellDist"))
{
writeCellDistribution
(
runTime,
masterMesh[0],
cellProcAddressing
);
}
}
// Write the addressing
Info<< "Reconstructing the addressing from the processor meshes"
<< " to the newly reconstructed mesh" << nl << endl;
forAll(databases, proci)
{
Info<< "Reading processor " << proci << " mesh from "
<< databases[proci].caseName() << endl;
polyMesh procMesh
(
IOobject
(
regionName,
databases[proci].timeName(),
databases[proci]
)
);
// From processor point to reconstructed mesh point
Info<< "Writing pointProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
(
IOobject
(
"pointProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
),
pointProcAddressing[proci]
).write();
// From processor face to reconstructed mesh face
Info<< "Writing faceProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList faceProcAddr
(
IOobject
(
"faceProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
),
faceProcAddressing[proci]
);
// Now add turning index to faceProcAddressing.
// See reconstructPar for meaning of turning index.
forAll(faceProcAddr, procFacei)
{
const label masterFacei = faceProcAddr[procFacei];
if
(
!procMesh.isInternalFace(procFacei)
&& masterFacei < masterInternalFaces
)
{
// proc face is now external but used to be internal
// face. Check if we have owner or neighbour.
label procOwn = procMesh.faceOwner()[procFacei];
label masterOwn = masterOwner[masterFacei];
if (cellProcAddressing[proci][procOwn] == masterOwn)
{
// No turning. Offset by 1.
faceProcAddr[procFacei]++;
}
else
{
// Turned face.
faceProcAddr[procFacei] =
-1 - faceProcAddr[procFacei];
}
}
else
{
// No turning. Offset by 1.
faceProcAddr[procFacei]++;
}
}
faceProcAddr.write();
// From processor cell to reconstructed mesh cell
Info<< "Writing cellProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
(
IOobject
(
"cellProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
),
cellProcAddressing[proci]
).write();
// From processor patch to reconstructed mesh patch
Info<< "Writing boundaryProcAddressing to "
<< databases[proci].caseName()
/procMesh.facesInstance()
/polyMesh::meshSubDir
<< endl;
labelIOList
(
IOobject
(
"boundaryProcAddressing",
procMesh.facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // Do not register
),
boundaryProcAddressing[proci]
).write();
Info<< endl;
}
}
}
Info<< "End.\n" << endl;
return 0;
}
// ************************************************************************* //