Mesh motion and topology change are now combinable run-time selectable options within fvMesh, replacing the restrictive dynamicFvMesh which supported only motion OR topology change. All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or an fvMeshTopoChanger. These two are specified within the optional mover and topoChanger sub-dictionaries of dynamicFvMeshDict. When the fvMesh is updated the fvMeshTopoChanger is first executed which can change the mesh topology in anyway, adding or removing points as required, for example for automatic mesh refinement/unrefinement, and all registered fields are mapped onto the updated mesh. The fvMeshMover is then executed which moved the points only and calculates the cell volume change and corresponding mesh-fluxes for conservative moving mesh transport. If multiple topological changes or movements are required these would be combined into special fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of changes, e.g. solidBodyMotionFunctions:multiMotion. The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been updated to demonstrate this new functionality by combining solid-body motion with mesh refinement/unrefinement: /*--------------------------------*- C++ -*----------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Version: dev \\/ M anipulation | \*---------------------------------------------------------------------------*/ FoamFile { format ascii; class dictionary; location "constant"; object dynamicMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // mover { type motionSolver; libs ("libfvMeshMovers.so" "libfvMotionSolvers.so"); motionSolver solidBody; solidBodyMotionFunction SDA; CofG (0 0 0); lamda 50; rollAmax 0.2; rollAmin 0.1; heaveA 4; swayA 2.4; Q 2; Tp 14; Tpn 12; dTi 0.06; dTp -0.001; } topoChanger { type refiner; libs ("libfvMeshTopoChangers.so"); // How often to refine refineInterval 1; // Field to be refinement on field alpha.water; // Refine field in between lower..upper lowerRefineLevel 0.001; upperRefineLevel 0.999; // Have slower than 2:1 refinement nBufferLayers 1; // Refine cells only up to maxRefinement levels maxRefinement 1; // Stop refinement if maxCells reached maxCells 200000; // Flux field and corresponding velocity field. Fluxes on changed // faces get recalculated by interpolating the velocity. Use 'none' // on surfaceScalarFields that do not need to be reinterpolated. correctFluxes ( (phi none) (nHatf none) (rhoPhi none) (alphaPhi.water none) (meshPhi none) (meshPhi_0 none) (ghf none) ); // Write the refinement level as a volScalarField dumpLevel true; } // ************************************************************************* // Note that currently this is the only working combination of mesh-motion with topology change within the new framework and further development is required to update the set of topology changers so that topology changes with mapping are separated from the mesh-motion so that they can be combined with any of the other movements or topology changes in any manner. All of the solvers and tutorials have been updated to use the new form of dynamicMeshDict but backward-compatibility was not practical due to the complete reorganisation of the mesh change structure.
418 lines
12 KiB
C++
418 lines
12 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "mirrorFvMesh.H"
|
|
#include "Time.H"
|
|
#include "plane.H"
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::mirrorFvMesh::mirrorFvMesh(const IOobject& io, const IOobject& dictIO)
|
|
:
|
|
fvMesh(io, false),
|
|
mirrorMeshDict_(dictIO)
|
|
{
|
|
plane mirrorPlane(mirrorMeshDict_);
|
|
|
|
scalar planeTolerance
|
|
(
|
|
mirrorMeshDict_.lookup<scalar>("planeTolerance")
|
|
);
|
|
|
|
const pointField& oldPoints = points();
|
|
const faceList& oldFaces = faces();
|
|
const cellList& oldCells = cells();
|
|
const label nOldInternalFaces = nInternalFaces();
|
|
const polyPatchList& oldPatches = boundaryMesh();
|
|
|
|
// Mirror the points
|
|
Info<< "Mirroring points. Old points: " << oldPoints.size();
|
|
|
|
pointField newPoints(2*oldPoints.size());
|
|
label nNewPoints = 0;
|
|
|
|
labelList mirrorPointLookup(oldPoints.size(), -1);
|
|
|
|
// Grab the old points
|
|
forAll(oldPoints, pointi)
|
|
{
|
|
newPoints[nNewPoints] = oldPoints[pointi];
|
|
nNewPoints++;
|
|
}
|
|
|
|
forAll(oldPoints, pointi)
|
|
{
|
|
scalar alpha =
|
|
mirrorPlane.normalIntersect
|
|
(
|
|
oldPoints[pointi],
|
|
mirrorPlane.normal()
|
|
);
|
|
|
|
// Check plane on tolerance
|
|
if (mag(alpha) > planeTolerance)
|
|
{
|
|
// The point gets mirrored
|
|
newPoints[nNewPoints] =
|
|
oldPoints[pointi] + 2.0*alpha*mirrorPlane.normal();
|
|
|
|
// remember the point correspondence
|
|
mirrorPointLookup[pointi] = nNewPoints;
|
|
nNewPoints++;
|
|
}
|
|
else
|
|
{
|
|
// The point is on the plane and does not get mirrored
|
|
// Adjust plane location
|
|
newPoints[nNewPoints] =
|
|
oldPoints[pointi] + alpha*mirrorPlane.normal();
|
|
|
|
mirrorPointLookup[pointi] = pointi;
|
|
}
|
|
}
|
|
|
|
// Reset the size of the point list
|
|
Info<< " New points: " << nNewPoints << endl;
|
|
newPoints.setSize(nNewPoints);
|
|
|
|
// Construct new to old map
|
|
pointMapPtr_.reset(new labelList(newPoints.size()));
|
|
labelList& pointMap = pointMapPtr_();
|
|
// Insert old points
|
|
forAll(oldPoints, oldPointi)
|
|
{
|
|
pointMap[oldPointi] = oldPointi;
|
|
}
|
|
forAll(mirrorPointLookup, oldPointi)
|
|
{
|
|
pointMap[mirrorPointLookup[oldPointi]] = oldPointi;
|
|
}
|
|
|
|
|
|
|
|
Info<< "Mirroring faces. Old faces: " << oldFaces.size();
|
|
|
|
// Algorithm:
|
|
// During mirroring, the faces that were previously boundary faces
|
|
// in the mirror plane may become ineternal faces. In order to
|
|
// deal with the ordering of the faces, the algorithm is split
|
|
// into two parts. For original faces, the internal faces are
|
|
// distributed to their owner cells. Once all internal faces are
|
|
// distributed, the boundary faces are visited and if they are in
|
|
// the mirror plane they are added to the master cells (the future
|
|
// boundary faces are not touched). After the first phase, the
|
|
// internal faces are collected in the cell order and numbering
|
|
// information is added. Then, the internal faces are mirrored
|
|
// and the face numbering data is stored for the mirrored section.
|
|
// Once all the internal faces are mirrored, the boundary faces
|
|
// are added by mirroring the faces patch by patch.
|
|
|
|
// Distribute internal faces
|
|
labelListList newCellFaces(oldCells.size());
|
|
|
|
const labelUList& oldOwnerStart = lduAddr().ownerStartAddr();
|
|
|
|
forAll(newCellFaces, celli)
|
|
{
|
|
labelList& curFaces = newCellFaces[celli];
|
|
|
|
const label s = oldOwnerStart[celli];
|
|
const label e = oldOwnerStart[celli + 1];
|
|
|
|
curFaces.setSize(e - s);
|
|
|
|
forAll(curFaces, i)
|
|
{
|
|
curFaces[i] = s + i;
|
|
}
|
|
}
|
|
|
|
// Distribute boundary faces. Remember the faces that have been inserted
|
|
// as internal
|
|
boolListList insertedBouFace(oldPatches.size());
|
|
|
|
forAll(oldPatches, patchi)
|
|
{
|
|
const polyPatch& curPatch = oldPatches[patchi];
|
|
|
|
if (curPatch.coupled())
|
|
{
|
|
WarningInFunction
|
|
<< "Found coupled patch " << curPatch.name() << endl
|
|
<< " Mirroring faces on coupled patches destroys"
|
|
<< " the ordering. This might be fixed by running a dummy"
|
|
<< " createPatch afterwards." << endl;
|
|
}
|
|
|
|
boolList& curInsBouFace = insertedBouFace[patchi];
|
|
|
|
curInsBouFace.setSize(curPatch.size());
|
|
curInsBouFace = false;
|
|
|
|
// Get faceCells for face insertion
|
|
const labelUList& curFaceCells = curPatch.faceCells();
|
|
const label curStart = curPatch.start();
|
|
|
|
forAll(curPatch, facei)
|
|
{
|
|
// Find out if the mirrored face is identical to the
|
|
// original. If so, the face needs to become internal and
|
|
// added to its owner cell
|
|
const face& origFace = curPatch[facei];
|
|
|
|
face mirrorFace(origFace.size());
|
|
forAll(mirrorFace, pointi)
|
|
{
|
|
mirrorFace[pointi] = mirrorPointLookup[origFace[pointi]];
|
|
}
|
|
|
|
if (origFace == mirrorFace)
|
|
{
|
|
// The mirror is identical to current face. This will
|
|
// become an internal face
|
|
const label oldSize = newCellFaces[curFaceCells[facei]].size();
|
|
|
|
newCellFaces[curFaceCells[facei]].setSize(oldSize + 1);
|
|
newCellFaces[curFaceCells[facei]][oldSize] = curStart + facei;
|
|
|
|
curInsBouFace[facei] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct the new list of faces. Boundary faces are added
|
|
// last, cush that each patch is mirrored separately. The
|
|
// addressing is stored in two separate arrays: first for the
|
|
// original cells (face order has changed) and then for the
|
|
// mirrored cells.
|
|
labelList masterFaceLookup(oldFaces.size(), -1);
|
|
labelList mirrorFaceLookup(oldFaces.size(), -1);
|
|
|
|
faceList newFaces(2*oldFaces.size());
|
|
label nNewFaces = 0;
|
|
|
|
// Insert original (internal) faces
|
|
forAll(newCellFaces, celli)
|
|
{
|
|
const labelList& curCellFaces = newCellFaces[celli];
|
|
|
|
forAll(curCellFaces, cfI)
|
|
{
|
|
newFaces[nNewFaces] = oldFaces[curCellFaces[cfI]];
|
|
masterFaceLookup[curCellFaces[cfI]] = nNewFaces;
|
|
|
|
nNewFaces++;
|
|
}
|
|
}
|
|
|
|
// Mirror internal faces
|
|
for (label facei = 0; facei < nOldInternalFaces; facei++)
|
|
{
|
|
const face& oldFace = oldFaces[facei];
|
|
face& nf = newFaces[nNewFaces];
|
|
nf.setSize(oldFace.size());
|
|
|
|
nf[0] = mirrorPointLookup[oldFace[0]];
|
|
|
|
for (label i = 1; i < oldFace.size(); i++)
|
|
{
|
|
nf[i] = mirrorPointLookup[oldFace[oldFace.size() - i]];
|
|
}
|
|
|
|
mirrorFaceLookup[facei] = nNewFaces;
|
|
nNewFaces++;
|
|
}
|
|
|
|
// Mirror boundary faces patch by patch
|
|
|
|
|
|
labelList newToOldPatch(boundary().size(), -1);
|
|
labelList newPatchSizes(boundary().size(), -1);
|
|
labelList newPatchStarts(boundary().size(), -1);
|
|
label nNewPatches = 0;
|
|
|
|
forAll(boundaryMesh(), patchi)
|
|
{
|
|
const label curPatchSize = boundaryMesh()[patchi].size();
|
|
const label curPatchStart = boundaryMesh()[patchi].start();
|
|
const boolList& curInserted = insertedBouFace[patchi];
|
|
|
|
newPatchStarts[nNewPatches] = nNewFaces;
|
|
|
|
// Master side
|
|
for (label facei = 0; facei < curPatchSize; facei++)
|
|
{
|
|
// Check if the face has already been added. If not, add it and
|
|
// insert the numbering details.
|
|
if (!curInserted[facei])
|
|
{
|
|
newFaces[nNewFaces] = oldFaces[curPatchStart + facei];
|
|
|
|
masterFaceLookup[curPatchStart + facei] = nNewFaces;
|
|
nNewFaces++;
|
|
}
|
|
}
|
|
|
|
// Mirror side
|
|
for (label facei = 0; facei < curPatchSize; facei++)
|
|
{
|
|
// Check if the face has already been added. If not, add it and
|
|
// insert the numbering details.
|
|
if (!curInserted[facei])
|
|
{
|
|
const face& oldFace = oldFaces[curPatchStart + facei];
|
|
face& nf = newFaces[nNewFaces];
|
|
nf.setSize(oldFace.size());
|
|
|
|
nf[0] = mirrorPointLookup[oldFace[0]];
|
|
|
|
for (label i = 1; i < oldFace.size(); i++)
|
|
{
|
|
nf[i] = mirrorPointLookup[oldFace[oldFace.size() - i]];
|
|
}
|
|
|
|
mirrorFaceLookup[curPatchStart + facei] = nNewFaces;
|
|
nNewFaces++;
|
|
}
|
|
else
|
|
{
|
|
// Grab the index of the master face for the mirror side
|
|
mirrorFaceLookup[curPatchStart + facei] =
|
|
masterFaceLookup[curPatchStart + facei];
|
|
}
|
|
}
|
|
|
|
// If patch exists, grab the name and type of the original patch
|
|
if (nNewFaces > newPatchStarts[nNewPatches])
|
|
{
|
|
newToOldPatch[nNewPatches] = patchi;
|
|
|
|
newPatchSizes[nNewPatches] =
|
|
nNewFaces - newPatchStarts[nNewPatches];
|
|
|
|
nNewPatches++;
|
|
}
|
|
}
|
|
|
|
// Tidy up the lists
|
|
newFaces.setSize(nNewFaces);
|
|
Info<< " New faces: " << nNewFaces << endl;
|
|
|
|
newToOldPatch.setSize(nNewPatches);
|
|
newPatchSizes.setSize(nNewPatches);
|
|
newPatchStarts.setSize(nNewPatches);
|
|
|
|
Info<< "Mirroring patches. Old patches: " << boundary().size()
|
|
<< " New patches: " << nNewPatches << endl;
|
|
|
|
Info<< "Mirroring cells. Old cells: " << oldCells.size()
|
|
<< " New cells: " << 2*oldCells.size() << endl;
|
|
|
|
cellList newCells(2*oldCells.size());
|
|
label nNewCells = 0;
|
|
|
|
// Construct new to old cell map
|
|
cellMapPtr_.reset(new labelList(newCells.size()));
|
|
labelList& cellMap = cellMapPtr_();
|
|
|
|
// Grab the original cells. Take care of face renumbering.
|
|
forAll(oldCells, celli)
|
|
{
|
|
const cell& oc = oldCells[celli];
|
|
|
|
cell& nc = newCells[nNewCells];
|
|
nc.setSize(oc.size());
|
|
|
|
forAll(oc, i)
|
|
{
|
|
nc[i] = masterFaceLookup[oc[i]];
|
|
}
|
|
|
|
cellMap[nNewCells] = celli;
|
|
|
|
nNewCells++;
|
|
}
|
|
|
|
// Mirror the cells
|
|
forAll(oldCells, celli)
|
|
{
|
|
const cell& oc = oldCells[celli];
|
|
|
|
cell& nc = newCells[nNewCells];
|
|
nc.setSize(oc.size());
|
|
|
|
forAll(oc, i)
|
|
{
|
|
nc[i] = mirrorFaceLookup[oc[i]];
|
|
}
|
|
|
|
cellMap[nNewCells] = celli;
|
|
|
|
nNewCells++;
|
|
}
|
|
|
|
// Mirror the cell shapes
|
|
Info<< "Mirroring cell shapes." << endl;
|
|
|
|
Info<< nl << "Creating new mesh" << endl;
|
|
mirrorMeshPtr_.reset
|
|
(
|
|
new fvMesh
|
|
(
|
|
io,
|
|
move(newPoints),
|
|
move(newFaces),
|
|
move(newCells)
|
|
)
|
|
);
|
|
|
|
fvMesh& pMesh = mirrorMeshPtr_();
|
|
|
|
// Add the boundary patches
|
|
List<polyPatch*> p(newPatchSizes.size());
|
|
|
|
forAll(p, patchi)
|
|
{
|
|
p[patchi] = boundaryMesh()[newToOldPatch[patchi]].clone
|
|
(
|
|
pMesh.boundaryMesh(),
|
|
patchi,
|
|
newPatchSizes[patchi],
|
|
newPatchStarts[patchi]
|
|
).ptr();
|
|
}
|
|
|
|
pMesh.addPatches(p);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::mirrorFvMesh::~mirrorFvMesh()
|
|
{}
|
|
|
|
|
|
// ************************************************************************* //
|