Mesh motion and topology change are now combinable run-time selectable options within fvMesh, replacing the restrictive dynamicFvMesh which supported only motion OR topology change. All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or an fvMeshTopoChanger. These two are specified within the optional mover and topoChanger sub-dictionaries of dynamicFvMeshDict. When the fvMesh is updated the fvMeshTopoChanger is first executed which can change the mesh topology in anyway, adding or removing points as required, for example for automatic mesh refinement/unrefinement, and all registered fields are mapped onto the updated mesh. The fvMeshMover is then executed which moved the points only and calculates the cell volume change and corresponding mesh-fluxes for conservative moving mesh transport. If multiple topological changes or movements are required these would be combined into special fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of changes, e.g. solidBodyMotionFunctions:multiMotion. The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been updated to demonstrate this new functionality by combining solid-body motion with mesh refinement/unrefinement: /*--------------------------------*- C++ -*----------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Version: dev \\/ M anipulation | \*---------------------------------------------------------------------------*/ FoamFile { format ascii; class dictionary; location "constant"; object dynamicMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // mover { type motionSolver; libs ("libfvMeshMovers.so" "libfvMotionSolvers.so"); motionSolver solidBody; solidBodyMotionFunction SDA; CofG (0 0 0); lamda 50; rollAmax 0.2; rollAmin 0.1; heaveA 4; swayA 2.4; Q 2; Tp 14; Tpn 12; dTi 0.06; dTp -0.001; } topoChanger { type refiner; libs ("libfvMeshTopoChangers.so"); // How often to refine refineInterval 1; // Field to be refinement on field alpha.water; // Refine field in between lower..upper lowerRefineLevel 0.001; upperRefineLevel 0.999; // Have slower than 2:1 refinement nBufferLayers 1; // Refine cells only up to maxRefinement levels maxRefinement 1; // Stop refinement if maxCells reached maxCells 200000; // Flux field and corresponding velocity field. Fluxes on changed // faces get recalculated by interpolating the velocity. Use 'none' // on surfaceScalarFields that do not need to be reinterpolated. correctFluxes ( (phi none) (nHatf none) (rhoPhi none) (alphaPhi.water none) (meshPhi none) (meshPhi_0 none) (ghf none) ); // Write the refinement level as a volScalarField dumpLevel true; } // ************************************************************************* // Note that currently this is the only working combination of mesh-motion with topology change within the new framework and further development is required to update the set of topology changers so that topology changes with mapping are separated from the mesh-motion so that they can be combined with any of the other movements or topology changes in any manner. All of the solvers and tutorials have been updated to use the new form of dynamicMeshDict but backward-compatibility was not practical due to the complete reorganisation of the mesh change structure.
971 lines
28 KiB
C++
971 lines
28 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "domainDecomposition.H"
|
|
#include "dictionary.H"
|
|
#include "labelIOList.H"
|
|
#include "processorPolyPatch.H"
|
|
#include "processorCyclicPolyPatch.H"
|
|
#include "fvMesh.H"
|
|
#include "OSspecific.H"
|
|
#include "Map.H"
|
|
#include "DynamicList.H"
|
|
#include "fvFieldDecomposer.H"
|
|
#include "IOobjectList.H"
|
|
#include "cellSet.H"
|
|
#include "faceSet.H"
|
|
#include "pointSet.H"
|
|
#include "decompositionModel.H"
|
|
#include "hexRef8Data.H"
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
void Foam::domainDecomposition::mark
|
|
(
|
|
const labelList& zoneElems,
|
|
const label zoneI,
|
|
labelList& elementToZone
|
|
)
|
|
{
|
|
forAll(zoneElems, i)
|
|
{
|
|
label pointi = zoneElems[i];
|
|
|
|
if (elementToZone[pointi] == -1)
|
|
{
|
|
// First occurrence
|
|
elementToZone[pointi] = zoneI;
|
|
}
|
|
else if (elementToZone[pointi] >= 0)
|
|
{
|
|
// Multiple zones
|
|
elementToZone[pointi] = -2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::domainDecomposition::domainDecomposition
|
|
(
|
|
const IOobject& io,
|
|
const fileName& dictFile
|
|
)
|
|
:
|
|
fvMesh(io, false),
|
|
facesInstancePointsPtr_
|
|
(
|
|
pointsInstance() != facesInstance()
|
|
? new pointIOField
|
|
(
|
|
IOobject
|
|
(
|
|
"points",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
*this,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
)
|
|
: nullptr
|
|
),
|
|
nProcs_
|
|
(
|
|
decompositionModel::New
|
|
(
|
|
*this,
|
|
dictFile
|
|
).lookup<int>("numberOfSubdomains")
|
|
),
|
|
distributed_(false),
|
|
cellToProc_(nCells()),
|
|
procPointAddressing_(nProcs_),
|
|
procFaceAddressing_(nProcs_),
|
|
procCellAddressing_(nProcs_),
|
|
procPatchSize_(nProcs_),
|
|
procPatchStartIndex_(nProcs_),
|
|
procNeighbourProcessors_(nProcs_),
|
|
procProcessorPatchSize_(nProcs_),
|
|
procProcessorPatchStartIndex_(nProcs_),
|
|
procProcessorPatchSubPatchIDs_(nProcs_),
|
|
procProcessorPatchSubPatchStarts_(nProcs_)
|
|
{
|
|
decompositionModel::New
|
|
(
|
|
*this,
|
|
dictFile
|
|
).readIfPresent("distributed", distributed_);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
|
|
|
|
Foam::domainDecomposition::~domainDecomposition()
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
bool Foam::domainDecomposition::writeDecomposition(const bool decomposeSets)
|
|
{
|
|
Info<< "\nConstructing processor meshes" << endl;
|
|
|
|
// Mark point/faces/cells that are in zones.
|
|
// -1 : not in zone
|
|
// -2 : in multiple zones
|
|
// >= 0 : in single given zone
|
|
// This will give direct lookup of elements that are in a single zone
|
|
// and we'll only have to revert back to searching through all zones
|
|
// for the duplicate elements
|
|
|
|
// Point zones
|
|
labelList pointToZone(points().size(), -1);
|
|
|
|
forAll(pointZones(), zoneI)
|
|
{
|
|
mark(pointZones()[zoneI], zoneI, pointToZone);
|
|
}
|
|
|
|
// Face zones
|
|
labelList faceToZone(faces().size(), -1);
|
|
|
|
forAll(faceZones(), zoneI)
|
|
{
|
|
mark(faceZones()[zoneI], zoneI, faceToZone);
|
|
}
|
|
|
|
// Cell zones
|
|
labelList cellToZone(nCells(), -1);
|
|
|
|
forAll(cellZones(), zoneI)
|
|
{
|
|
mark(cellZones()[zoneI], zoneI, cellToZone);
|
|
}
|
|
|
|
|
|
PtrList<const cellSet> cellSets;
|
|
PtrList<const faceSet> faceSets;
|
|
PtrList<const pointSet> pointSets;
|
|
if (decomposeSets)
|
|
{
|
|
// Read sets
|
|
IOobjectList objects(*this, facesInstance(), "polyMesh/sets");
|
|
{
|
|
IOobjectList cSets(objects.lookupClass(cellSet::typeName));
|
|
forAllConstIter(IOobjectList, cSets, iter)
|
|
{
|
|
cellSets.append(new cellSet(*iter()));
|
|
}
|
|
}
|
|
{
|
|
IOobjectList fSets(objects.lookupClass(faceSet::typeName));
|
|
forAllConstIter(IOobjectList, fSets, iter)
|
|
{
|
|
faceSets.append(new faceSet(*iter()));
|
|
}
|
|
}
|
|
{
|
|
IOobjectList pSets(objects.lookupClass(pointSet::typeName));
|
|
forAllConstIter(IOobjectList, pSets, iter)
|
|
{
|
|
pointSets.append(new pointSet(*iter()));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Load refinement data (if any)
|
|
hexRef8Data baseMeshData
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
*this,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
);
|
|
|
|
|
|
|
|
label maxProcCells = 0;
|
|
label totProcFaces = 0;
|
|
label maxProcPatches = 0;
|
|
label totProcPatches = 0;
|
|
label maxProcFaces = 0;
|
|
|
|
|
|
// Write out the meshes
|
|
for (label proci = 0; proci < nProcs_; proci++)
|
|
{
|
|
// Create processor points
|
|
const labelList& curPointLabels = procPointAddressing_[proci];
|
|
|
|
const pointField& meshPoints = points();
|
|
|
|
labelList pointLookup(nPoints(), -1);
|
|
|
|
pointField procPoints(curPointLabels.size());
|
|
|
|
forAll(curPointLabels, pointi)
|
|
{
|
|
procPoints[pointi] = meshPoints[curPointLabels[pointi]];
|
|
|
|
pointLookup[curPointLabels[pointi]] = pointi;
|
|
}
|
|
|
|
// Create processor faces
|
|
const labelList& curFaceLabels = procFaceAddressing_[proci];
|
|
|
|
const faceList& meshFaces = faces();
|
|
|
|
labelList faceLookup(nFaces(), -1);
|
|
|
|
faceList procFaces(curFaceLabels.size());
|
|
|
|
forAll(curFaceLabels, facei)
|
|
{
|
|
// Mark the original face as used
|
|
// Remember to decrement the index by one (turning index)
|
|
//
|
|
label curF = mag(curFaceLabels[facei]) - 1;
|
|
|
|
faceLookup[curF] = facei;
|
|
|
|
// get the original face
|
|
labelList origFaceLabels;
|
|
|
|
if (curFaceLabels[facei] >= 0)
|
|
{
|
|
// face not turned
|
|
origFaceLabels = meshFaces[curF];
|
|
}
|
|
else
|
|
{
|
|
origFaceLabels = meshFaces[curF].reverseFace();
|
|
}
|
|
|
|
// translate face labels into local point list
|
|
face& procFaceLabels = procFaces[facei];
|
|
|
|
procFaceLabels.setSize(origFaceLabels.size());
|
|
|
|
forAll(origFaceLabels, pointi)
|
|
{
|
|
procFaceLabels[pointi] = pointLookup[origFaceLabels[pointi]];
|
|
}
|
|
}
|
|
|
|
// Create processor cells
|
|
const labelList& curCellLabels = procCellAddressing_[proci];
|
|
|
|
const cellList& meshCells = cells();
|
|
|
|
cellList procCells(curCellLabels.size());
|
|
|
|
forAll(curCellLabels, celli)
|
|
{
|
|
const labelList& origCellLabels = meshCells[curCellLabels[celli]];
|
|
|
|
cell& curCell = procCells[celli];
|
|
|
|
curCell.setSize(origCellLabels.size());
|
|
|
|
forAll(origCellLabels, cellFacei)
|
|
{
|
|
curCell[cellFacei] = faceLookup[origCellLabels[cellFacei]];
|
|
}
|
|
}
|
|
|
|
// Create processor mesh without a boundary
|
|
|
|
fileName processorCasePath
|
|
(
|
|
time().caseName()/fileName(word("processor") + Foam::name(proci))
|
|
);
|
|
|
|
// create a database
|
|
Time processorDb
|
|
(
|
|
Time::controlDictName,
|
|
time().rootPath(),
|
|
processorCasePath,
|
|
word("system"),
|
|
word("constant")
|
|
);
|
|
processorDb.setTime(time());
|
|
|
|
// create the mesh. Two situations:
|
|
// - points and faces come from the same time ('instance'). The mesh
|
|
// will get constructed in the same instance.
|
|
// - points come from a different time (moving mesh cases).
|
|
// It will read the points belonging to the faces instance and
|
|
// construct the procMesh with it which then gets handled as above.
|
|
// (so with 'old' geometry).
|
|
// Only at writing time will it additionally write the current
|
|
// points.
|
|
|
|
autoPtr<polyMesh> procMeshPtr;
|
|
|
|
if (facesInstancePointsPtr_.valid())
|
|
{
|
|
// Construct mesh from facesInstance.
|
|
pointField facesInstancePoints
|
|
(
|
|
facesInstancePointsPtr_(),
|
|
curPointLabels
|
|
);
|
|
|
|
procMeshPtr.reset
|
|
(
|
|
new polyMesh
|
|
(
|
|
IOobject
|
|
(
|
|
this->polyMesh::name(), // region of undecomposed mesh
|
|
facesInstance(),
|
|
processorDb
|
|
),
|
|
move(facesInstancePoints),
|
|
move(procFaces),
|
|
move(procCells)
|
|
)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
procMeshPtr.reset
|
|
(
|
|
new polyMesh
|
|
(
|
|
IOobject
|
|
(
|
|
this->polyMesh::name(), // region of undecomposed mesh
|
|
facesInstance(),
|
|
processorDb
|
|
),
|
|
move(procPoints),
|
|
move(procFaces),
|
|
move(procCells)
|
|
)
|
|
);
|
|
}
|
|
polyMesh& procMesh = procMeshPtr();
|
|
|
|
|
|
// Create processor boundary patches
|
|
const labelList& curPatchSizes = procPatchSize_[proci];
|
|
|
|
const labelList& curPatchStarts = procPatchStartIndex_[proci];
|
|
|
|
const labelList& curNeighbourProcessors =
|
|
procNeighbourProcessors_[proci];
|
|
|
|
const labelList& curProcessorPatchSizes =
|
|
procProcessorPatchSize_[proci];
|
|
|
|
const labelList& curProcessorPatchStarts =
|
|
procProcessorPatchStartIndex_[proci];
|
|
|
|
const labelListList& curSubPatchIDs =
|
|
procProcessorPatchSubPatchIDs_[proci];
|
|
|
|
const labelListList& curSubStarts =
|
|
procProcessorPatchSubPatchStarts_[proci];
|
|
|
|
const polyPatchList& meshPatches = boundaryMesh();
|
|
|
|
|
|
// Count the number of inter-proc patches
|
|
label nInterProcPatches = 0;
|
|
forAll(curSubPatchIDs, procPatchi)
|
|
{
|
|
nInterProcPatches += curSubPatchIDs[procPatchi].size();
|
|
}
|
|
|
|
List<polyPatch*> procPatches
|
|
(
|
|
curPatchSizes.size() + nInterProcPatches,
|
|
reinterpret_cast<polyPatch*>(0)
|
|
);
|
|
|
|
label nPatches = 0;
|
|
|
|
forAll(curPatchSizes, patchi)
|
|
{
|
|
// Get the face labels consistent with the field mapping
|
|
// (reuse the patch field mappers)
|
|
const polyPatch& meshPatch = meshPatches[patchi];
|
|
|
|
fvFieldDecomposer::patchFieldDecomposer patchMapper
|
|
(
|
|
SubList<label>
|
|
(
|
|
curFaceLabels,
|
|
curPatchSizes[patchi],
|
|
curPatchStarts[patchi]
|
|
),
|
|
meshPatch.start()
|
|
);
|
|
|
|
// Map existing patches
|
|
procPatches[nPatches] = meshPatch.clone
|
|
(
|
|
procMesh.boundaryMesh(),
|
|
nPatches,
|
|
patchMapper.addressing(),
|
|
curPatchStarts[patchi]
|
|
).ptr();
|
|
|
|
nPatches++;
|
|
}
|
|
|
|
forAll(curProcessorPatchSizes, procPatchi)
|
|
{
|
|
const labelList& subPatchID = curSubPatchIDs[procPatchi];
|
|
const labelList& subStarts = curSubStarts[procPatchi];
|
|
|
|
label curStart = curProcessorPatchStarts[procPatchi];
|
|
|
|
forAll(subPatchID, i)
|
|
{
|
|
label size =
|
|
(
|
|
i < subPatchID.size()-1
|
|
? subStarts[i+1] - subStarts[i]
|
|
: curProcessorPatchSizes[procPatchi] - subStarts[i]
|
|
);
|
|
|
|
if (subPatchID[i] == -1)
|
|
{
|
|
// From internal faces
|
|
procPatches[nPatches] =
|
|
new processorPolyPatch
|
|
(
|
|
size,
|
|
curStart,
|
|
nPatches,
|
|
procMesh.boundaryMesh(),
|
|
proci,
|
|
curNeighbourProcessors[procPatchi]
|
|
);
|
|
}
|
|
else
|
|
{
|
|
const coupledPolyPatch& pcPatch
|
|
= refCast<const coupledPolyPatch>
|
|
(
|
|
boundaryMesh()[subPatchID[i]]
|
|
);
|
|
|
|
procPatches[nPatches] =
|
|
new processorCyclicPolyPatch
|
|
(
|
|
size,
|
|
curStart,
|
|
nPatches,
|
|
procMesh.boundaryMesh(),
|
|
proci,
|
|
curNeighbourProcessors[procPatchi],
|
|
pcPatch.name()
|
|
);
|
|
}
|
|
|
|
curStart += size;
|
|
|
|
nPatches++;
|
|
}
|
|
}
|
|
|
|
// Add boundary patches
|
|
procMesh.addPatches(procPatches);
|
|
|
|
// Create and add zones
|
|
|
|
// Point zones
|
|
{
|
|
const meshPointZones& pz = pointZones();
|
|
|
|
// Go through all the zoned points and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zonePoints(pz.size());
|
|
|
|
// Estimate size
|
|
forAll(zonePoints, zoneI)
|
|
{
|
|
zonePoints[zoneI].setCapacity(pz[zoneI].size() / nProcs_);
|
|
}
|
|
|
|
// Use the pointToZone map to find out the single zone (if any),
|
|
// use slow search only for shared points.
|
|
forAll(curPointLabels, pointi)
|
|
{
|
|
label curPoint = curPointLabels[pointi];
|
|
|
|
label zoneI = pointToZone[curPoint];
|
|
|
|
if (zoneI >= 0)
|
|
{
|
|
// Single zone.
|
|
zonePoints[zoneI].append(pointi);
|
|
}
|
|
else if (zoneI == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(pz, zoneI)
|
|
{
|
|
label index = pz[zoneI].whichPoint(curPoint);
|
|
|
|
if (index != -1)
|
|
{
|
|
zonePoints[zoneI].append(pointi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.pointZones().clearAddressing();
|
|
procMesh.pointZones().setSize(zonePoints.size());
|
|
forAll(zonePoints, zoneI)
|
|
{
|
|
procMesh.pointZones().set
|
|
(
|
|
zoneI,
|
|
pz[zoneI].clone
|
|
(
|
|
procMesh.pointZones(),
|
|
zoneI,
|
|
zonePoints[zoneI].shrink()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (pz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.pointZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Face zones
|
|
{
|
|
const meshFaceZones& fz = faceZones();
|
|
|
|
// Go through all the zoned face and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zoneFaces(fz.size());
|
|
List<DynamicList<bool>> zoneFaceFlips(fz.size());
|
|
|
|
// Estimate size
|
|
forAll(zoneFaces, zoneI)
|
|
{
|
|
label procSize = fz[zoneI].size() / nProcs_;
|
|
|
|
zoneFaces[zoneI].setCapacity(procSize);
|
|
zoneFaceFlips[zoneI].setCapacity(procSize);
|
|
}
|
|
|
|
// Go through all the zoned faces and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
forAll(curFaceLabels, facei)
|
|
{
|
|
// Remember to decrement the index by one (turning index)
|
|
//
|
|
label curF = mag(curFaceLabels[facei]) - 1;
|
|
|
|
label zoneI = faceToZone[curF];
|
|
|
|
if (zoneI >= 0)
|
|
{
|
|
// Single zone. Add the face
|
|
zoneFaces[zoneI].append(facei);
|
|
|
|
label index = fz[zoneI].whichFace(curF);
|
|
|
|
bool flip = fz[zoneI].flipMap()[index];
|
|
|
|
if (curFaceLabels[facei] < 0)
|
|
{
|
|
flip = !flip;
|
|
}
|
|
|
|
zoneFaceFlips[zoneI].append(flip);
|
|
}
|
|
else if (zoneI == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(fz, zoneI)
|
|
{
|
|
label index = fz[zoneI].whichFace(curF);
|
|
|
|
if (index != -1)
|
|
{
|
|
zoneFaces[zoneI].append(facei);
|
|
|
|
bool flip = fz[zoneI].flipMap()[index];
|
|
|
|
if (curFaceLabels[facei] < 0)
|
|
{
|
|
flip = !flip;
|
|
}
|
|
|
|
zoneFaceFlips[zoneI].append(flip);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.faceZones().clearAddressing();
|
|
procMesh.faceZones().setSize(zoneFaces.size());
|
|
forAll(zoneFaces, zoneI)
|
|
{
|
|
procMesh.faceZones().set
|
|
(
|
|
zoneI,
|
|
fz[zoneI].clone
|
|
(
|
|
zoneFaces[zoneI].shrink(), // addressing
|
|
zoneFaceFlips[zoneI].shrink(), // flipmap
|
|
zoneI,
|
|
procMesh.faceZones()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (fz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.faceZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Cell zones
|
|
{
|
|
const meshCellZones& cz = cellZones();
|
|
|
|
// Go through all the zoned cells and find out if they
|
|
// belong to a zone. If so, add it to the zone as
|
|
// necessary
|
|
List<DynamicList<label>> zoneCells(cz.size());
|
|
|
|
// Estimate size
|
|
forAll(zoneCells, zoneI)
|
|
{
|
|
zoneCells[zoneI].setCapacity(cz[zoneI].size() / nProcs_);
|
|
}
|
|
|
|
forAll(curCellLabels, celli)
|
|
{
|
|
label curCelli = curCellLabels[celli];
|
|
|
|
label zoneI = cellToZone[curCelli];
|
|
|
|
if (zoneI >= 0)
|
|
{
|
|
// Single zone.
|
|
zoneCells[zoneI].append(celli);
|
|
}
|
|
else if (zoneI == -2)
|
|
{
|
|
// Multiple zones. Lookup.
|
|
forAll(cz, zoneI)
|
|
{
|
|
label index = cz[zoneI].whichCell(curCelli);
|
|
|
|
if (index != -1)
|
|
{
|
|
zoneCells[zoneI].append(celli);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
procMesh.cellZones().clearAddressing();
|
|
procMesh.cellZones().setSize(zoneCells.size());
|
|
forAll(zoneCells, zoneI)
|
|
{
|
|
procMesh.cellZones().set
|
|
(
|
|
zoneI,
|
|
cz[zoneI].clone
|
|
(
|
|
zoneCells[zoneI].shrink(),
|
|
zoneI,
|
|
procMesh.cellZones()
|
|
)
|
|
);
|
|
}
|
|
|
|
if (cz.size())
|
|
{
|
|
// Force writing on all processors
|
|
procMesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
|
|
}
|
|
}
|
|
|
|
// Set the precision of the points data to be min 10
|
|
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
|
|
|
|
procMesh.write();
|
|
|
|
// Write points if pointsInstance differing from facesInstance
|
|
if (facesInstancePointsPtr_.valid())
|
|
{
|
|
pointIOField pointsInstancePoints
|
|
(
|
|
IOobject
|
|
(
|
|
"points",
|
|
pointsInstance(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
move(procPoints)
|
|
);
|
|
pointsInstancePoints.write();
|
|
}
|
|
|
|
|
|
// Decompose any sets
|
|
if (decomposeSets)
|
|
{
|
|
forAll(cellSets, i)
|
|
{
|
|
const cellSet& cs = cellSets[i];
|
|
cellSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curCellLabels, i)
|
|
{
|
|
if (cs.found(curCellLabels[i]))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
forAll(faceSets, i)
|
|
{
|
|
const faceSet& cs = faceSets[i];
|
|
faceSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curFaceLabels, i)
|
|
{
|
|
if (cs.found(mag(curFaceLabels[i])-1))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
forAll(pointSets, i)
|
|
{
|
|
const pointSet& cs = pointSets[i];
|
|
pointSet set(procMesh, cs.name(), cs.size()/nProcs_);
|
|
forAll(curPointLabels, i)
|
|
{
|
|
if (cs.found(curPointLabels[i]))
|
|
{
|
|
set.insert(i);
|
|
}
|
|
}
|
|
set.write();
|
|
}
|
|
}
|
|
|
|
|
|
// Optional hexRef8 data
|
|
hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
facesInstance(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
baseMeshData,
|
|
procCellAddressing_[proci],
|
|
procPointAddressing_[proci]
|
|
).write();
|
|
|
|
|
|
// Statistics
|
|
|
|
Info<< endl
|
|
<< "Processor " << proci << nl
|
|
<< " Number of cells = " << procMesh.nCells()
|
|
<< endl;
|
|
|
|
maxProcCells = max(maxProcCells, procMesh.nCells());
|
|
|
|
label nBoundaryFaces = 0;
|
|
label nProcPatches = 0;
|
|
label nProcFaces = 0;
|
|
|
|
forAll(procMesh.boundaryMesh(), patchi)
|
|
{
|
|
if (isA<processorPolyPatch>(procMesh.boundaryMesh()[patchi]))
|
|
{
|
|
const processorPolyPatch& ppp =
|
|
refCast<const processorPolyPatch>
|
|
(
|
|
procMesh.boundaryMesh()[patchi]
|
|
);
|
|
|
|
Info<< " Number of faces shared with processor "
|
|
<< ppp.neighbProcNo() << " = " << ppp.size() << endl;
|
|
|
|
nProcPatches++;
|
|
nProcFaces += ppp.size();
|
|
}
|
|
else
|
|
{
|
|
nBoundaryFaces += procMesh.boundaryMesh()[patchi].size();
|
|
}
|
|
}
|
|
|
|
Info<< " Number of processor patches = " << nProcPatches << nl
|
|
<< " Number of processor faces = " << nProcFaces << nl
|
|
<< " Number of boundary faces = " << nBoundaryFaces << endl;
|
|
|
|
totProcFaces += nProcFaces;
|
|
totProcPatches += nProcPatches;
|
|
maxProcPatches = max(maxProcPatches, nProcPatches);
|
|
maxProcFaces = max(maxProcFaces, nProcFaces);
|
|
|
|
// create and write the addressing information
|
|
labelIOList pointProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"pointProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procPointAddressing_[proci]
|
|
);
|
|
pointProcAddressing.write();
|
|
|
|
labelIOList faceProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"faceProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procFaceAddressing_[proci]
|
|
);
|
|
faceProcAddressing.write();
|
|
|
|
labelIOList cellProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"cellProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procCellAddressing_[proci]
|
|
);
|
|
cellProcAddressing.write();
|
|
|
|
// Write patch map for backwards compatibility.
|
|
// (= identity map for original patches, -1 for processor patches)
|
|
label nMeshPatches = curPatchSizes.size();
|
|
labelList procBoundaryAddressing(identity(nMeshPatches));
|
|
procBoundaryAddressing.setSize(nMeshPatches+nProcPatches, -1);
|
|
|
|
labelIOList boundaryProcAddressing
|
|
(
|
|
IOobject
|
|
(
|
|
"boundaryProcAddressing",
|
|
procMesh.facesInstance(),
|
|
procMesh.meshSubDir,
|
|
procMesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procBoundaryAddressing
|
|
);
|
|
boundaryProcAddressing.write();
|
|
}
|
|
|
|
scalar avgProcCells = scalar(nCells())/nProcs_;
|
|
scalar avgProcPatches = scalar(totProcPatches)/nProcs_;
|
|
scalar avgProcFaces = scalar(totProcFaces)/nProcs_;
|
|
|
|
// In case of all faces on one processor. Just to avoid division by 0.
|
|
if (totProcPatches == 0)
|
|
{
|
|
avgProcPatches = 1;
|
|
}
|
|
if (totProcFaces == 0)
|
|
{
|
|
avgProcFaces = 1;
|
|
}
|
|
|
|
Info<< nl
|
|
<< "Number of processor faces = " << totProcFaces/2 << nl
|
|
<< "Max number of cells = " << maxProcCells
|
|
<< " (" << 100.0*(maxProcCells-avgProcCells)/avgProcCells
|
|
<< "% above average " << avgProcCells << ")" << nl
|
|
<< "Max number of processor patches = " << maxProcPatches
|
|
<< " (" << 100.0*(maxProcPatches-avgProcPatches)/avgProcPatches
|
|
<< "% above average " << avgProcPatches << ")" << nl
|
|
<< "Max number of faces between processors = " << maxProcFaces
|
|
<< " (" << 100.0*(maxProcFaces-avgProcFaces)/avgProcFaces
|
|
<< "% above average " << avgProcFaces << ")" << nl
|
|
<< endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|