Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/domainDecomposition.C
Henry Weller cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00

971 lines
28 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "domainDecomposition.H"
#include "dictionary.H"
#include "labelIOList.H"
#include "processorPolyPatch.H"
#include "processorCyclicPolyPatch.H"
#include "fvMesh.H"
#include "OSspecific.H"
#include "Map.H"
#include "DynamicList.H"
#include "fvFieldDecomposer.H"
#include "IOobjectList.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "decompositionModel.H"
#include "hexRef8Data.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::domainDecomposition::mark
(
const labelList& zoneElems,
const label zoneI,
labelList& elementToZone
)
{
forAll(zoneElems, i)
{
label pointi = zoneElems[i];
if (elementToZone[pointi] == -1)
{
// First occurrence
elementToZone[pointi] = zoneI;
}
else if (elementToZone[pointi] >= 0)
{
// Multiple zones
elementToZone[pointi] = -2;
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::domainDecomposition::domainDecomposition
(
const IOobject& io,
const fileName& dictFile
)
:
fvMesh(io, false),
facesInstancePointsPtr_
(
pointsInstance() != facesInstance()
? new pointIOField
(
IOobject
(
"points",
facesInstance(),
polyMesh::meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
)
: nullptr
),
nProcs_
(
decompositionModel::New
(
*this,
dictFile
).lookup<int>("numberOfSubdomains")
),
distributed_(false),
cellToProc_(nCells()),
procPointAddressing_(nProcs_),
procFaceAddressing_(nProcs_),
procCellAddressing_(nProcs_),
procPatchSize_(nProcs_),
procPatchStartIndex_(nProcs_),
procNeighbourProcessors_(nProcs_),
procProcessorPatchSize_(nProcs_),
procProcessorPatchStartIndex_(nProcs_),
procProcessorPatchSubPatchIDs_(nProcs_),
procProcessorPatchSubPatchStarts_(nProcs_)
{
decompositionModel::New
(
*this,
dictFile
).readIfPresent("distributed", distributed_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::domainDecomposition::~domainDecomposition()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::domainDecomposition::writeDecomposition(const bool decomposeSets)
{
Info<< "\nConstructing processor meshes" << endl;
// Mark point/faces/cells that are in zones.
// -1 : not in zone
// -2 : in multiple zones
// >= 0 : in single given zone
// This will give direct lookup of elements that are in a single zone
// and we'll only have to revert back to searching through all zones
// for the duplicate elements
// Point zones
labelList pointToZone(points().size(), -1);
forAll(pointZones(), zoneI)
{
mark(pointZones()[zoneI], zoneI, pointToZone);
}
// Face zones
labelList faceToZone(faces().size(), -1);
forAll(faceZones(), zoneI)
{
mark(faceZones()[zoneI], zoneI, faceToZone);
}
// Cell zones
labelList cellToZone(nCells(), -1);
forAll(cellZones(), zoneI)
{
mark(cellZones()[zoneI], zoneI, cellToZone);
}
PtrList<const cellSet> cellSets;
PtrList<const faceSet> faceSets;
PtrList<const pointSet> pointSets;
if (decomposeSets)
{
// Read sets
IOobjectList objects(*this, facesInstance(), "polyMesh/sets");
{
IOobjectList cSets(objects.lookupClass(cellSet::typeName));
forAllConstIter(IOobjectList, cSets, iter)
{
cellSets.append(new cellSet(*iter()));
}
}
{
IOobjectList fSets(objects.lookupClass(faceSet::typeName));
forAllConstIter(IOobjectList, fSets, iter)
{
faceSets.append(new faceSet(*iter()));
}
}
{
IOobjectList pSets(objects.lookupClass(pointSet::typeName));
forAllConstIter(IOobjectList, pSets, iter)
{
pointSets.append(new pointSet(*iter()));
}
}
}
// Load refinement data (if any)
hexRef8Data baseMeshData
(
IOobject
(
"dummy",
facesInstance(),
polyMesh::meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
)
);
label maxProcCells = 0;
label totProcFaces = 0;
label maxProcPatches = 0;
label totProcPatches = 0;
label maxProcFaces = 0;
// Write out the meshes
for (label proci = 0; proci < nProcs_; proci++)
{
// Create processor points
const labelList& curPointLabels = procPointAddressing_[proci];
const pointField& meshPoints = points();
labelList pointLookup(nPoints(), -1);
pointField procPoints(curPointLabels.size());
forAll(curPointLabels, pointi)
{
procPoints[pointi] = meshPoints[curPointLabels[pointi]];
pointLookup[curPointLabels[pointi]] = pointi;
}
// Create processor faces
const labelList& curFaceLabels = procFaceAddressing_[proci];
const faceList& meshFaces = faces();
labelList faceLookup(nFaces(), -1);
faceList procFaces(curFaceLabels.size());
forAll(curFaceLabels, facei)
{
// Mark the original face as used
// Remember to decrement the index by one (turning index)
//
label curF = mag(curFaceLabels[facei]) - 1;
faceLookup[curF] = facei;
// get the original face
labelList origFaceLabels;
if (curFaceLabels[facei] >= 0)
{
// face not turned
origFaceLabels = meshFaces[curF];
}
else
{
origFaceLabels = meshFaces[curF].reverseFace();
}
// translate face labels into local point list
face& procFaceLabels = procFaces[facei];
procFaceLabels.setSize(origFaceLabels.size());
forAll(origFaceLabels, pointi)
{
procFaceLabels[pointi] = pointLookup[origFaceLabels[pointi]];
}
}
// Create processor cells
const labelList& curCellLabels = procCellAddressing_[proci];
const cellList& meshCells = cells();
cellList procCells(curCellLabels.size());
forAll(curCellLabels, celli)
{
const labelList& origCellLabels = meshCells[curCellLabels[celli]];
cell& curCell = procCells[celli];
curCell.setSize(origCellLabels.size());
forAll(origCellLabels, cellFacei)
{
curCell[cellFacei] = faceLookup[origCellLabels[cellFacei]];
}
}
// Create processor mesh without a boundary
fileName processorCasePath
(
time().caseName()/fileName(word("processor") + Foam::name(proci))
);
// create a database
Time processorDb
(
Time::controlDictName,
time().rootPath(),
processorCasePath,
word("system"),
word("constant")
);
processorDb.setTime(time());
// create the mesh. Two situations:
// - points and faces come from the same time ('instance'). The mesh
// will get constructed in the same instance.
// - points come from a different time (moving mesh cases).
// It will read the points belonging to the faces instance and
// construct the procMesh with it which then gets handled as above.
// (so with 'old' geometry).
// Only at writing time will it additionally write the current
// points.
autoPtr<polyMesh> procMeshPtr;
if (facesInstancePointsPtr_.valid())
{
// Construct mesh from facesInstance.
pointField facesInstancePoints
(
facesInstancePointsPtr_(),
curPointLabels
);
procMeshPtr.reset
(
new polyMesh
(
IOobject
(
this->polyMesh::name(), // region of undecomposed mesh
facesInstance(),
processorDb
),
move(facesInstancePoints),
move(procFaces),
move(procCells)
)
);
}
else
{
procMeshPtr.reset
(
new polyMesh
(
IOobject
(
this->polyMesh::name(), // region of undecomposed mesh
facesInstance(),
processorDb
),
move(procPoints),
move(procFaces),
move(procCells)
)
);
}
polyMesh& procMesh = procMeshPtr();
// Create processor boundary patches
const labelList& curPatchSizes = procPatchSize_[proci];
const labelList& curPatchStarts = procPatchStartIndex_[proci];
const labelList& curNeighbourProcessors =
procNeighbourProcessors_[proci];
const labelList& curProcessorPatchSizes =
procProcessorPatchSize_[proci];
const labelList& curProcessorPatchStarts =
procProcessorPatchStartIndex_[proci];
const labelListList& curSubPatchIDs =
procProcessorPatchSubPatchIDs_[proci];
const labelListList& curSubStarts =
procProcessorPatchSubPatchStarts_[proci];
const polyPatchList& meshPatches = boundaryMesh();
// Count the number of inter-proc patches
label nInterProcPatches = 0;
forAll(curSubPatchIDs, procPatchi)
{
nInterProcPatches += curSubPatchIDs[procPatchi].size();
}
List<polyPatch*> procPatches
(
curPatchSizes.size() + nInterProcPatches,
reinterpret_cast<polyPatch*>(0)
);
label nPatches = 0;
forAll(curPatchSizes, patchi)
{
// Get the face labels consistent with the field mapping
// (reuse the patch field mappers)
const polyPatch& meshPatch = meshPatches[patchi];
fvFieldDecomposer::patchFieldDecomposer patchMapper
(
SubList<label>
(
curFaceLabels,
curPatchSizes[patchi],
curPatchStarts[patchi]
),
meshPatch.start()
);
// Map existing patches
procPatches[nPatches] = meshPatch.clone
(
procMesh.boundaryMesh(),
nPatches,
patchMapper.addressing(),
curPatchStarts[patchi]
).ptr();
nPatches++;
}
forAll(curProcessorPatchSizes, procPatchi)
{
const labelList& subPatchID = curSubPatchIDs[procPatchi];
const labelList& subStarts = curSubStarts[procPatchi];
label curStart = curProcessorPatchStarts[procPatchi];
forAll(subPatchID, i)
{
label size =
(
i < subPatchID.size()-1
? subStarts[i+1] - subStarts[i]
: curProcessorPatchSizes[procPatchi] - subStarts[i]
);
if (subPatchID[i] == -1)
{
// From internal faces
procPatches[nPatches] =
new processorPolyPatch
(
size,
curStart,
nPatches,
procMesh.boundaryMesh(),
proci,
curNeighbourProcessors[procPatchi]
);
}
else
{
const coupledPolyPatch& pcPatch
= refCast<const coupledPolyPatch>
(
boundaryMesh()[subPatchID[i]]
);
procPatches[nPatches] =
new processorCyclicPolyPatch
(
size,
curStart,
nPatches,
procMesh.boundaryMesh(),
proci,
curNeighbourProcessors[procPatchi],
pcPatch.name()
);
}
curStart += size;
nPatches++;
}
}
// Add boundary patches
procMesh.addPatches(procPatches);
// Create and add zones
// Point zones
{
const meshPointZones& pz = pointZones();
// Go through all the zoned points and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zonePoints(pz.size());
// Estimate size
forAll(zonePoints, zoneI)
{
zonePoints[zoneI].setCapacity(pz[zoneI].size() / nProcs_);
}
// Use the pointToZone map to find out the single zone (if any),
// use slow search only for shared points.
forAll(curPointLabels, pointi)
{
label curPoint = curPointLabels[pointi];
label zoneI = pointToZone[curPoint];
if (zoneI >= 0)
{
// Single zone.
zonePoints[zoneI].append(pointi);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(pz, zoneI)
{
label index = pz[zoneI].whichPoint(curPoint);
if (index != -1)
{
zonePoints[zoneI].append(pointi);
}
}
}
}
procMesh.pointZones().clearAddressing();
procMesh.pointZones().setSize(zonePoints.size());
forAll(zonePoints, zoneI)
{
procMesh.pointZones().set
(
zoneI,
pz[zoneI].clone
(
procMesh.pointZones(),
zoneI,
zonePoints[zoneI].shrink()
)
);
}
if (pz.size())
{
// Force writing on all processors
procMesh.pointZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Face zones
{
const meshFaceZones& fz = faceZones();
// Go through all the zoned face and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zoneFaces(fz.size());
List<DynamicList<bool>> zoneFaceFlips(fz.size());
// Estimate size
forAll(zoneFaces, zoneI)
{
label procSize = fz[zoneI].size() / nProcs_;
zoneFaces[zoneI].setCapacity(procSize);
zoneFaceFlips[zoneI].setCapacity(procSize);
}
// Go through all the zoned faces and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
forAll(curFaceLabels, facei)
{
// Remember to decrement the index by one (turning index)
//
label curF = mag(curFaceLabels[facei]) - 1;
label zoneI = faceToZone[curF];
if (zoneI >= 0)
{
// Single zone. Add the face
zoneFaces[zoneI].append(facei);
label index = fz[zoneI].whichFace(curF);
bool flip = fz[zoneI].flipMap()[index];
if (curFaceLabels[facei] < 0)
{
flip = !flip;
}
zoneFaceFlips[zoneI].append(flip);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(fz, zoneI)
{
label index = fz[zoneI].whichFace(curF);
if (index != -1)
{
zoneFaces[zoneI].append(facei);
bool flip = fz[zoneI].flipMap()[index];
if (curFaceLabels[facei] < 0)
{
flip = !flip;
}
zoneFaceFlips[zoneI].append(flip);
}
}
}
}
procMesh.faceZones().clearAddressing();
procMesh.faceZones().setSize(zoneFaces.size());
forAll(zoneFaces, zoneI)
{
procMesh.faceZones().set
(
zoneI,
fz[zoneI].clone
(
zoneFaces[zoneI].shrink(), // addressing
zoneFaceFlips[zoneI].shrink(), // flipmap
zoneI,
procMesh.faceZones()
)
);
}
if (fz.size())
{
// Force writing on all processors
procMesh.faceZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Cell zones
{
const meshCellZones& cz = cellZones();
// Go through all the zoned cells and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zoneCells(cz.size());
// Estimate size
forAll(zoneCells, zoneI)
{
zoneCells[zoneI].setCapacity(cz[zoneI].size() / nProcs_);
}
forAll(curCellLabels, celli)
{
label curCelli = curCellLabels[celli];
label zoneI = cellToZone[curCelli];
if (zoneI >= 0)
{
// Single zone.
zoneCells[zoneI].append(celli);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(cz, zoneI)
{
label index = cz[zoneI].whichCell(curCelli);
if (index != -1)
{
zoneCells[zoneI].append(celli);
}
}
}
}
procMesh.cellZones().clearAddressing();
procMesh.cellZones().setSize(zoneCells.size());
forAll(zoneCells, zoneI)
{
procMesh.cellZones().set
(
zoneI,
cz[zoneI].clone
(
zoneCells[zoneI].shrink(),
zoneI,
procMesh.cellZones()
)
);
}
if (cz.size())
{
// Force writing on all processors
procMesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Set the precision of the points data to be min 10
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
procMesh.write();
// Write points if pointsInstance differing from facesInstance
if (facesInstancePointsPtr_.valid())
{
pointIOField pointsInstancePoints
(
IOobject
(
"points",
pointsInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
move(procPoints)
);
pointsInstancePoints.write();
}
// Decompose any sets
if (decomposeSets)
{
forAll(cellSets, i)
{
const cellSet& cs = cellSets[i];
cellSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curCellLabels, i)
{
if (cs.found(curCellLabels[i]))
{
set.insert(i);
}
}
set.write();
}
forAll(faceSets, i)
{
const faceSet& cs = faceSets[i];
faceSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curFaceLabels, i)
{
if (cs.found(mag(curFaceLabels[i])-1))
{
set.insert(i);
}
}
set.write();
}
forAll(pointSets, i)
{
const pointSet& cs = pointSets[i];
pointSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curPointLabels, i)
{
if (cs.found(curPointLabels[i]))
{
set.insert(i);
}
}
set.write();
}
}
// Optional hexRef8 data
hexRef8Data
(
IOobject
(
"dummy",
facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
baseMeshData,
procCellAddressing_[proci],
procPointAddressing_[proci]
).write();
// Statistics
Info<< endl
<< "Processor " << proci << nl
<< " Number of cells = " << procMesh.nCells()
<< endl;
maxProcCells = max(maxProcCells, procMesh.nCells());
label nBoundaryFaces = 0;
label nProcPatches = 0;
label nProcFaces = 0;
forAll(procMesh.boundaryMesh(), patchi)
{
if (isA<processorPolyPatch>(procMesh.boundaryMesh()[patchi]))
{
const processorPolyPatch& ppp =
refCast<const processorPolyPatch>
(
procMesh.boundaryMesh()[patchi]
);
Info<< " Number of faces shared with processor "
<< ppp.neighbProcNo() << " = " << ppp.size() << endl;
nProcPatches++;
nProcFaces += ppp.size();
}
else
{
nBoundaryFaces += procMesh.boundaryMesh()[patchi].size();
}
}
Info<< " Number of processor patches = " << nProcPatches << nl
<< " Number of processor faces = " << nProcFaces << nl
<< " Number of boundary faces = " << nBoundaryFaces << endl;
totProcFaces += nProcFaces;
totProcPatches += nProcPatches;
maxProcPatches = max(maxProcPatches, nProcPatches);
maxProcFaces = max(maxProcFaces, nProcFaces);
// create and write the addressing information
labelIOList pointProcAddressing
(
IOobject
(
"pointProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procPointAddressing_[proci]
);
pointProcAddressing.write();
labelIOList faceProcAddressing
(
IOobject
(
"faceProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procFaceAddressing_[proci]
);
faceProcAddressing.write();
labelIOList cellProcAddressing
(
IOobject
(
"cellProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procCellAddressing_[proci]
);
cellProcAddressing.write();
// Write patch map for backwards compatibility.
// (= identity map for original patches, -1 for processor patches)
label nMeshPatches = curPatchSizes.size();
labelList procBoundaryAddressing(identity(nMeshPatches));
procBoundaryAddressing.setSize(nMeshPatches+nProcPatches, -1);
labelIOList boundaryProcAddressing
(
IOobject
(
"boundaryProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procBoundaryAddressing
);
boundaryProcAddressing.write();
}
scalar avgProcCells = scalar(nCells())/nProcs_;
scalar avgProcPatches = scalar(totProcPatches)/nProcs_;
scalar avgProcFaces = scalar(totProcFaces)/nProcs_;
// In case of all faces on one processor. Just to avoid division by 0.
if (totProcPatches == 0)
{
avgProcPatches = 1;
}
if (totProcFaces == 0)
{
avgProcFaces = 1;
}
Info<< nl
<< "Number of processor faces = " << totProcFaces/2 << nl
<< "Max number of cells = " << maxProcCells
<< " (" << 100.0*(maxProcCells-avgProcCells)/avgProcCells
<< "% above average " << avgProcCells << ")" << nl
<< "Max number of processor patches = " << maxProcPatches
<< " (" << 100.0*(maxProcPatches-avgProcPatches)/avgProcPatches
<< "% above average " << avgProcPatches << ")" << nl
<< "Max number of faces between processors = " << maxProcFaces
<< " (" << 100.0*(maxProcFaces-avgProcFaces)/avgProcFaces
<< "% above average " << avgProcFaces << ")" << nl
<< endl;
return true;
}
// ************************************************************************* //