Files
Henry Weller d3a237f560 reactingEulerFoam: Multiphase thermal phase change and support for multiple mass transfer mechanisms
- Thermal phase change and wall boiling functionality has been generalized to
  support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
  simultaneous mass transfer mechanisms. For example, combination of thermal phase
  and inhomogeneous population balance models.

Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
2017-12-31 19:50:22 +00:00

268 lines
7.0 KiB
C
Executable File

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "NonRandomTwoLiquid.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
NonRandomTwoLiquid
(
const dictionary& dict,
const phasePair& pair
)
:
InterfaceCompositionModel<Thermo, OtherThermo>(dict, pair),
gamma1_
(
IOobject
(
IOobject::groupName("gamma1", pair.name()),
pair.phase1().mesh().time().timeName(),
pair.phase1().mesh()
),
pair.phase1().mesh(),
dimensionedScalar("one", dimless, 1)
),
gamma2_
(
IOobject
(
IOobject::groupName("gamma2", pair.name()),
pair.phase1().mesh().time().timeName(),
pair.phase1().mesh()
),
pair.phase1().mesh(),
dimensionedScalar("one", dimless, 1)
),
beta12_("", dimless/dimTemperature, 0),
beta21_("", dimless/dimTemperature, 0)
{
if (this->speciesNames_.size() != 2)
{
FatalErrorInFunction
<< "NonRandomTwoLiquid model is suitable for two species only."
<< exit(FatalError);
}
species1Name_ = this->speciesNames_[0];
species2Name_ = this->speciesNames_[1];
species1Index_ = this->thermo_.composition().species()[species1Name_];
species2Index_ = this->thermo_.composition().species()[species2Name_];
alpha12_ = dimensionedScalar
(
"alpha12",
dimless,
dict.subDict(species1Name_).lookup("alpha")
);
alpha21_ = dimensionedScalar
(
"alpha21",
dimless,
dict.subDict(species2Name_).lookup("alpha")
);
beta12_ = dimensionedScalar
(
"beta12",
dimless/dimTemperature,
dict.subDict(species1Name_).lookup("beta")
);
beta21_ = dimensionedScalar
(
"beta21",
dimless/dimTemperature,
dict.subDict(species2Name_).lookup("beta")
);
saturationModel12_.reset
(
saturationModel::New
(
dict.subDict(species1Name_).subDict("interaction"),
pair.phase1().mesh()
).ptr()
);
saturationModel21_.reset
(
saturationModel::New
(
dict.subDict(species2Name_).subDict("interaction"),
pair.phase1().mesh()
).ptr()
);
speciesModel1_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species1Name_),
pair
).ptr()
);
speciesModel2_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species2Name_),
pair
).ptr()
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
~NonRandomTwoLiquid()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
void
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
update
(
const volScalarField& Tf
)
{
volScalarField W(this->thermo_.composition().W());
volScalarField X1
(
this->thermo_.composition().Y(species1Index_)
*W
/this->thermo_.composition().W(species1Index_)
);
volScalarField X2
(
this->thermo_.composition().Y(species2Index_)
*W
/this->thermo_.composition().W(species2Index_)
);
volScalarField alpha12(alpha12_ + Tf*beta12_);
volScalarField alpha21(alpha21_ + Tf*beta21_);
volScalarField tau12(saturationModel12_->lnPSat(Tf));
volScalarField tau21(saturationModel21_->lnPSat(Tf));
volScalarField G12(exp(- alpha12*tau12));
volScalarField G21(exp(- alpha21*tau21));
gamma1_ =
exp
(
sqr(X2)
*(
tau21*sqr(G21)/max(sqr(X1 + X2*G21), SMALL)
+ tau12*G12/max(sqr(X2 + X1*G12), SMALL)
)
);
gamma2_ =
exp
(
sqr(X1)
*(
tau12*sqr(G12)/max(sqr(X2 + X1*G12), SMALL)
+ tau21*G21/max(sqr(X1 + X2*G21), SMALL)
)
);
}
template<class Thermo, class OtherThermo>
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::Yf
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel1_->Yf(speciesName, Tf)
*gamma1_;
}
else if(speciesName == species2Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel2_->Yf(speciesName, Tf)
*gamma2_;
}
else
{
return
this->thermo_.composition().Y(speciesName)
*(scalar(1) - Yf(species1Name_, Tf) - Yf(species2Name_, Tf));
}
}
template<class Thermo, class OtherThermo>
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
YfPrime
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel1_->YfPrime(speciesName, Tf)
*gamma1_;
}
else if(speciesName == species2Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel2_->YfPrime(speciesName, Tf)
*gamma2_;
}
else
{
return
- this->thermo_.composition().Y(speciesName)
*(YfPrime(species1Name_, Tf) + YfPrime(species2Name_, Tf));
}
}
// ************************************************************************* //