Files
OpenFOAM-12/applications/modules/multiphaseEuler/phaseSystems/phaseSystem/phaseSystemSolve.C
Henry Weller e744fdb5f1 Modular solvers: Reorganised directory structure of applications and tutorials
The new flexible and extensible modular solvers structure already provides most
of the simulation functionality needed for single phase, multiphase,
multicomponent etc. fluid flow problems as well as a very effective method of
combining these with solid heat transfer, solid stress, surface film to solve
complex multi-region, multi-physics problems and are now the primary mechanism
for the further development of OpenFOAM simulation capability in future.  To
emphasis this for both users and developers the applications/solvers directory
has been separated into applications/modules containing all the solver modules:

├── modules
│   ├── compressibleMultiphaseVoF
│   ├── compressibleVoF
│   ├── film
│   ├── fluid
│   ├── fluidSolver
│   ├── functions
│   ├── incompressibleDenseParticleFluid
│   ├── incompressibleDriftFlux
│   ├── incompressibleFluid
│   ├── incompressibleMultiphaseVoF
│   ├── incompressibleVoF
│   ├── isothermalFilm
│   ├── isothermalFluid
│   ├── movingMesh
│   ├── multicomponentFluid
│   ├── multiphaseEuler
│   ├── multiphaseVoFSolver
│   ├── shockFluid
│   ├── solid
│   ├── solidDisplacement
│   ├── twoPhaseSolver
│   ├── twoPhaseVoFSolver
│   ├── VoFSolver
│   └── XiFluid

applications/solvers containing the foamRun and foamMultiRun solver applications
which instantiate and execute the chosen solver modules and also standalone
solver applications for special initialisation and test activities:

├── solvers
│   ├── boundaryFoam
│   ├── chemFoam
│   ├── foamMultiRun
│   ├── foamRun
│   └── potentialFoam

and applications/legacy containing legacy solver applications which are not
currently being actively developed but the functionality of which will be merged
into the solver modules or form the basis of new solver modules as the need
arises:

├── legacy
│   ├── basic
│   │   ├── financialFoam
│   │   └── laplacianFoam
│   ├── combustion
│   │   └── PDRFoam
│   ├── compressible
│   │   └── rhoPorousSimpleFoam
│   ├── electromagnetics
│   │   ├── electrostaticFoam
│   │   ├── magneticFoam
│   │   └── mhdFoam
│   ├── incompressible
│   │   ├── adjointShapeOptimisationFoam
│   │   ├── dnsFoam
│   │   ├── icoFoam
│   │   ├── porousSimpleFoam
│   │   └── shallowWaterFoam
│   └── lagrangian
│       ├── dsmcFoam
│       ├── mdEquilibrationFoam
│       └── mdFoam

Correspondingly the tutorials directory structure has been reorganised with the
modular solver directories at the top level with names that make it easier for
users to find example cases relating to their particular requirements and a
legacy sub-directory containing cases corresponding to the legacy solver
applications listed above:

├── compressibleMultiphaseVoF
│   └── damBreak4phaseLaminar
├── compressibleVoF
│   ├── ballValve
│   ├── climbingRod
│   ├── damBreak
│   ├── depthCharge2D
│   ├── depthCharge3D
│   ├── sloshingTank2D
│   └── throttle
├── film
│   └── rivuletPanel
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
├── incompressibleDenseParticleFluid
│   ├── column
│   ├── cyclone
│   ├── Goldschmidt
│   ├── GoldschmidtMPPIC
│   └── injectionChannel
├── incompressibleDriftFlux
│   ├── dahl
│   ├── mixerVessel2DMRF
│   └── tank3D
├── incompressibleFluid
│   ├── airFoil2D
│   ├── ballValve
│   ├── blockedChannel
│   ├── cavity
│   ├── cavityCoupledU
│   ├── channel395
│   ├── drivaerFastback
│   ├── ductSecondaryFlow
│   ├── elipsekkLOmega
│   ├── flowWithOpenBoundary
│   ├── hopperParticles
│   ├── impeller
│   ├── mixerSRF
│   ├── mixerVessel2D
│   ├── mixerVessel2DMRF
│   ├── mixerVesselHorizontal2DParticles
│   ├── motorBike
│   ├── motorBikeSteady
│   ├── movingCone
│   ├── offsetCylinder
│   ├── oscillatingInlet
│   ├── pipeCyclic
│   ├── pitzDaily
│   ├── pitzDailyLES
│   ├── pitzDailyLESDevelopedInlet
│   ├── pitzDailyLTS
│   ├── pitzDailyPulse
│   ├── pitzDailyScalarTransport
│   ├── pitzDailySteady
│   ├── pitzDailySteadyExperimentalInlet
│   ├── pitzDailySteadyMappedToPart
│   ├── pitzDailySteadyMappedToRefined
│   ├── planarContraction
│   ├── planarCouette
│   ├── planarPoiseuille
│   ├── porousBlockage
│   ├── propeller
│   ├── roomResidenceTime
│   ├── rotor2DRotating
│   ├── rotor2DSRF
│   ├── rotorDisk
│   ├── T3A
│   ├── TJunction
│   ├── TJunctionFan
│   ├── turbineSiting
│   ├── waveSubSurface
│   ├── windAroundBuildings
│   └── wingMotion
├── incompressibleMultiphaseVoF
│   ├── damBreak4phase
│   ├── damBreak4phaseFineLaminar
│   ├── damBreak4phaseLaminar
│   └── mixerVessel2DMRF
├── incompressibleVoF
│   ├── angledDuct
│   ├── capillaryRise
│   ├── cavitatingBullet
│   ├── climbingRod
│   ├── containerDischarge2D
│   ├── damBreak
│   ├── damBreakLaminar
│   ├── damBreakPorousBaffle
│   ├── damBreakWithObstacle
│   ├── DTCHull
│   ├── DTCHullMoving
│   ├── DTCHullWave
│   ├── floatingObject
│   ├── floatingObjectWaves
│   ├── forcedUpstreamWave
│   ├── mixerVessel
│   ├── mixerVessel2DMRF
│   ├── mixerVesselHorizontal2D
│   ├── nozzleFlow2D
│   ├── planingHullW3
│   ├── propeller
│   ├── sloshingCylinder
│   ├── sloshingTank2D
│   ├── sloshingTank2D3DoF
│   ├── sloshingTank3D
│   ├── sloshingTank3D3DoF
│   ├── sloshingTank3D6DoF
│   ├── testTubeMixer
│   ├── waterChannel
│   ├── wave
│   ├── wave3D
│   └── weirOverflow
├── isothermalFilm
│   └── rivuletPanel
├── isothermalFluid
│   ├── potentialFreeSurfaceMovingOscillatingBox
│   └── potentialFreeSurfaceOscillatingBox
├── legacy
│   ├── basic
│   │   ├── financialFoam
│   │   │   └── europeanCall
│   │   └── laplacianFoam
│   │       └── flange
│   ├── combustion
│   │   └── PDRFoam
│   │       └── flamePropagationWithObstacles
│   ├── compressible
│   │   └── rhoPorousSimpleFoam
│   │       ├── angledDuctExplicit
│   │       └── angledDuctImplicit
│   ├── electromagnetics
│   │   ├── electrostaticFoam
│   │   │   └── chargedWire
│   │   └── mhdFoam
│   │       └── hartmann
│   ├── incompressible
│   │   ├── adjointShapeOptimisationFoam
│   │   │   └── pitzDaily
│   │   ├── dnsFoam
│   │   │   └── boxTurb16
│   │   ├── icoFoam
│   │   │   ├── cavity
│   │   │   └── elbow
│   │   ├── porousSimpleFoam
│   │   │   ├── angledDuctExplicit
│   │   │   └── angledDuctImplicit
│   │   └── shallowWaterFoam
│   │       └── squareBump
│   ├── lagrangian
│   │   ├── dsmcFoam
│   │   │   ├── freeSpacePeriodic
│   │   │   ├── freeSpaceStream
│   │   │   ├── supersonicCorner
│   │   │   └── wedge15Ma5
│   │   ├── mdEquilibrationFoam
│   │   │   ├── periodicCubeArgon
│   │   │   └── periodicCubeWater
│   │   └── mdFoam
│   │       └── nanoNozzle
├── mesh
│   ├── blockMesh
│   │   ├── pipe
│   │   ├── sphere
│   │   ├── sphere7
│   │   └── sphere7ProjectedEdges
│   ├── refineMesh
│   │   └── refineFieldDirs
│   └── snappyHexMesh
│       ├── flange
│       └── pipe
├── movingMesh
│   └── SnakeRiverCanyon
├── multicomponentFluid
│   ├── aachenBomb
│   ├── counterFlowFlame2D
│   ├── counterFlowFlame2D_GRI
│   ├── counterFlowFlame2D_GRI_TDAC
│   ├── counterFlowFlame2DLTS
│   ├── counterFlowFlame2DLTS_GRI_TDAC
│   ├── DLR_A_LTS
│   ├── filter
│   ├── lockExchange
│   ├── membrane
│   ├── nc7h16
│   ├── parcelInBox
│   ├── SandiaD_LTS
│   ├── simplifiedSiwek
│   ├── smallPoolFire2D
│   ├── smallPoolFire3D
│   ├── verticalChannel
│   ├── verticalChannelLTS
│   └── verticalChannelSteady
├── multiphaseEuler
│   ├── bed
│   ├── bubbleColumn
│   ├── bubbleColumnEvaporating
│   ├── bubbleColumnEvaporatingDissolving
│   ├── bubbleColumnEvaporatingReacting
│   ├── bubbleColumnIATE
│   ├── bubbleColumnLaminar
│   ├── bubbleColumnLES
│   ├── bubblePipe
│   ├── damBreak4phase
│   ├── fluidisedBed
│   ├── fluidisedBedLaminar
│   ├── Grossetete
│   ├── hydrofoil
│   ├── injection
│   ├── LBend
│   ├── mixerVessel2D
│   ├── mixerVessel2DMRF
│   ├── pipeBend
│   ├── steamInjection
│   ├── titaniaSynthesis
│   ├── titaniaSynthesisSurface
│   ├── wallBoilingIATE
│   ├── wallBoilingPolydisperse
│   └── wallBoilingPolydisperseTwoGroups
├── multiRegion
│   ├── CHT
│   │   ├── circuitBoardCooling
│   │   ├── coolingCylinder2D
│   │   ├── coolingSphere
│   │   ├── heatedDuct
│   │   ├── heatExchanger
│   │   ├── multiphaseCoolingCylinder2D
│   │   ├── reverseBurner
│   │   ├── shellAndTubeHeatExchanger
│   │   ├── VoFcoolingCylinder2D
│   │   └── wallBoiling
│   └── film
│       ├── cylinder
│       ├── cylinderDripping
│       ├── cylinderVoF
│       ├── hotBoxes
│       ├── rivuletBox
│       ├── rivuletPanel
│       ├── splashPanel
│       └── VoFToFilm
├── potentialFoam
│   ├── cylinder
│   └── pitzDaily
├── resources
│   ├── blockMesh
│   ├── geometry
│   └── thermoData
├── shockFluid
│   ├── biconic25-55Run35
│   ├── forwardStep
│   ├── LadenburgJet60psi
│   ├── movingCone
│   ├── obliqueShock
│   ├── shockTube
│   └── wedge15Ma5
├── solidDisplacement
│   ├── beamEndLoad
│   └── plateHole
└── XiFluid
    ├── kivaTest
    └── moriyoshiHomogeneous
2023-05-25 18:14:41 +01:00

580 lines
18 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2013-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseSystem.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcMeshPhi.H"
#include "fvcSup.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fvmSup.H"
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::phaseSystem::solve
(
const PtrList<volScalarField>& rAUs,
const PtrList<surfaceScalarField>& rAUfs
)
{
const dictionary& alphaControls = mesh_.solution().solverDict("alpha");
const label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
const label nAlphaCorr(alphaControls.lookup<label>("nAlphaCorr"));
const bool LTS = fv::localEulerDdt::enabled(mesh_);
// Temporary switch for testing and comparing the standard split
// and the new un-split phase flux discretisation
const bool splitPhaseFlux
(
alphaControls.lookupOrDefault<Switch>("splitPhaseFlux", false)
);
// Temporary switch for testing and comparing the standard mean flux
// and the new phase flux reference for the phase flux correction
const bool meanFluxReference
(
alphaControls.lookupOrDefault<Switch>("meanFluxReference", false)
);
// Optional reference phase which is not solved for
// but obtained from the sum of the other phases
phaseModel* referencePhasePtr = nullptr;
// The phases which are solved
// i.e. the moving phases less the optional reference phase
phaseModelPartialList solvePhases;
if (referencePhaseName_ != word::null)
{
referencePhasePtr = &phases()[referencePhaseName_];
solvePhases.setSize(movingPhases().size() - 1);
label solvePhasesi = 0;
forAll(movingPhases(), movingPhasei)
{
if (&movingPhases()[movingPhasei] != referencePhasePtr)
{
solvePhases.set(solvePhasesi++, &movingPhases()[movingPhasei]);
}
}
}
else
{
solvePhases = movingPhases();
}
forAll(phases(), phasei)
{
phases()[phasei].correctBoundaryConditions();
}
// Calculate the void fraction
volScalarField alphaVoid
(
IOobject
(
"alphaVoid",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless, 1)
);
forAll(stationaryPhases(), stationaryPhasei)
{
alphaVoid -= stationaryPhases()[stationaryPhasei];
}
// Calculate the effective flux of the moving phases
tmp<surfaceScalarField> tphiMoving(phi_);
if (stationaryPhases().size())
{
tphiMoving = phi_/upwind<scalar>(mesh_, phi_).interpolate(alphaVoid);
}
const surfaceScalarField& phiMoving = tphiMoving();
bool dilatation = false;
forAll(movingPhases(), movingPhasei)
{
if (movingPhases()[movingPhasei].divU().valid())
{
dilatation = true;
break;
}
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
PtrList<volScalarField::Internal> Sps(phases().size());
PtrList<volScalarField::Internal> Sus(phases().size());
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
const label phasei = phase.index();
Sps.set
(
phasei,
new volScalarField::Internal
(
IOobject
(
"Sp",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless/dimTime, 0)
)
);
Sus.set
(
phasei,
new volScalarField::Internal
(
"Su",
min(alpha.v(), scalar(1))
*fvc::div(fvc::absolute(phi_, phase.U()))->v()
)
);
if (dilatation)
{
// Construct the dilatation rate source term
volScalarField::Internal dgdt
(
volScalarField::Internal::New
(
"dgdt",
mesh_,
dimensionedScalar(dimless/dimTime, 0)
)
);
forAll(phases(), phasej)
{
const phaseModel& phase2 = phases()[phasej];
const volScalarField& alpha2 = phase2;
if (&phase2 != &phase)
{
if (phase.divU().valid())
{
dgdt += alpha2()*phase.divU()()();
}
if (phase2.divU().valid())
{
dgdt -= alpha()*phase2.divU()()();
}
}
}
volScalarField::Internal& Sp = Sps[phasei];
volScalarField::Internal& Su = Sus[phasei];
forAll(dgdt, celli)
{
if (dgdt[celli] > 0)
{
Sp[celli] -= dgdt[celli]/max(1 - alpha[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1 - alpha[celli], 1e-4);
}
else if (dgdt[celli] < 0)
{
Sp[celli] += dgdt[celli]/max(alpha[celli], 1e-4);
}
}
}
}
tmp<volScalarField> trSubDeltaT;
if (LTS && nAlphaSubCycles > 1)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
}
List<volScalarField*> alphaPtrs(phases().size());
forAll(phases(), phasei)
{
alphaPtrs[phasei] = &phases()[phasei];
}
for
(
subCycle<volScalarField, subCycleFields> alphaSubCycle
(
alphaPtrs,
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
// Create correction fluxes
PtrList<surfaceScalarField> alphaPhis(phases().size());
tmp<surfaceScalarField> alphaDByAf;
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
{
alphaDByAf = this->alphaDByAf(rAUs, rAUfs);
}
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
alphaPhis.set
(
phase.index(),
new surfaceScalarField
(
IOobject::groupName("alphaPhiCorr", phase.name()),
fvc::flux
(
splitPhaseFlux ? phi_ : phase.phi()(),
alpha,
"div(phi," + alpha.name() + ')'
)
)
);
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
if (splitPhaseFlux)
{
forAll(phases(), phasei)
{
const phaseModel& phase2 = phases()[phasei];
const volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
surfaceScalarField phir(phase.phi() - phase2.phi());
cAlphaTable::const_iterator cAlpha
(
cAlphas_.find(phaseInterface(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
phir +=
min(cAlpha()*phic, max(phic))
*nHatf(alpha, alpha2);
}
const word phirScheme
(
"div(phir,"
+ alpha2.name() + ',' + alpha.name()
+ ')'
);
alphaPhi += fvc::flux
(
-fvc::flux(-phir, alpha2, phirScheme),
alpha,
phirScheme
);
}
}
else if (!cAlphas_.empty())
{
forAll(phases(), phasei)
{
const phaseModel& phase2 = phases()[phasei];
const volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
cAlphaTable::const_iterator cAlpha
(
cAlphas_.find(phaseInterface(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
const surfaceScalarField phir
(
phase.phi() - phase2.phi()
);
const surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
const surfaceScalarField phirc
(
min(cAlpha()*phic, max(phic))
*nHatf(alpha, alpha2)
);
const word phirScheme
(
"div(phir,"
+ alpha2.name() + ',' + alpha.name()
+ ')'
);
alphaPhi += fvc::flux
(
-fvc::flux(-phirc, alpha2, phirScheme),
alpha,
phirScheme
);
}
}
}
if (alphaDByAf.valid())
{
alphaPhi +=
alphaDByAf()
*fvc::snGrad(alpha, "bounded")*mesh_.magSf();
}
phase.correctInflowOutflow(alphaPhi);
MULES::limit
(
geometricOneField(),
alpha,
meanFluxReference
? phiMoving // Guarantees boundedness but less accurate
: phase.phi()(), // Less robust but more accurate
alphaPhi,
Sps[phase.index()],
Sus[phase.index()],
min(alphaVoid.primitiveField(), phase.alphaMax())(),
zeroField(),
false
);
}
// Limit the flux corrections to ensure the phase fractions sum to 1
{
// Generate alphas for the moving phases
UPtrList<const volScalarField> alphasMoving
(
movingPhases().size()
);
UPtrList<surfaceScalarField> alphaPhisMoving
(
movingPhases().size()
);
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
alphasMoving.set(movingPhasei, &phase);
alphaPhisMoving.set
(
movingPhasei,
&alphaPhis[phase.index()]
);
}
MULES::limitSum(alphasMoving, alphaPhisMoving, phiMoving);
}
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
volScalarField& alpha = phase;
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
phase.correctInflowOutflow(alphaPhi);
MULES::explicitSolve
(
geometricOneField(),
alpha,
alphaPhi,
Sps[phase.index()],
Sus[phase.index()]
);
if (alphaSubCycle.index() == 1)
{
phase.alphaPhiRef() = alphaPhi;
}
else
{
phase.alphaPhiRef() += alphaPhi;
}
}
if (alphaDByAf.valid())
{
// Update alphaDByAf due to changes in alpha
alphaDByAf = this->alphaDByAf(rAUs, rAUfs);
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
volScalarField& alpha = phase;
fvScalarMatrix alphaEqn
(
fvm::ddt(alpha) - fvc::ddt(alpha)
- fvm::laplacian(alphaDByAf(), alpha, "bounded")
);
alphaEqn.solve();
phase.alphaPhiRef() += alphaEqn.flux();
}
}
// Report the phase fractions and the phase fraction sum
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
Info<< phase.name() << " fraction, min, max = "
<< phase.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase).value()
<< ' ' << max(phase).value()
<< endl;
}
if (referencePhasePtr)
{
volScalarField& referenceAlpha = *referencePhasePtr;
referenceAlpha = alphaVoid;
forAll(solvePhases, solvePhasei)
{
referenceAlpha -= solvePhases[solvePhasei];
}
}
else
{
volScalarField sumAlphaMoving
(
IOobject
(
"sumAlphaMoving",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless, 0)
);
forAll(movingPhases(), movingPhasei)
{
sumAlphaMoving += movingPhases()[movingPhasei];
}
Info<< "Phase-sum volume fraction, min, max = "
<< (sumAlphaMoving + 1 - alphaVoid)()
.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlphaMoving + 1 - alphaVoid).value()
<< ' ' << max(sumAlphaMoving + 1 - alphaVoid).value()
<< endl;
// Correct the sum of the phase fractions to avoid drift
forAll(movingPhases(), movingPhasei)
{
movingPhases()[movingPhasei] *= alphaVoid/sumAlphaMoving;
}
}
}
if (nAlphaSubCycles > 1)
{
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
phase.alphaPhiRef() /= nAlphaSubCycles;
}
}
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
phase.alphaRhoPhiRef() =
fvc::interpolate(phase.rho())*phase.alphaPhi();
phase.maxMin(0, 1);
}
if (referencePhasePtr)
{
phaseModel& referencePhase = *referencePhasePtr;
referencePhase.alphaPhiRef() = phi_;
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
referencePhase.alphaPhiRef() -= phase.alphaPhi();
}
referencePhase.alphaRhoPhiRef() =
fvc::interpolate(referencePhase.rho())
*referencePhase.alphaPhi();
volScalarField& referenceAlpha = referencePhase;
referenceAlpha = alphaVoid;
forAll(solvePhases, solvePhasei)
{
referenceAlpha -= solvePhases[solvePhasei];
}
}
}
}
// ************************************************************************* //