Files
OpenFOAM-12/applications/solvers/modules/incompressibleDriftFlux/incompressibleDriftFlux.H
Henry Weller d558e49336 incompressibleDriftFlux: Override the surfaceTensionForce functions
so that the surface tension force is not evaluated or applied as it is
inappropriate for drift-flux modelling of suspensions.
2023-04-23 15:56:53 +01:00

219 lines
6.4 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::solvers::incompressibleDriftFlux
Description
Solver module for 2 incompressible fluids using the mixture approach with
the drift-flux approximation for relative motion of the phases, with
optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved with mixture transport modelling in which a
single laminar, RAS or LES model is selected to model the momentum stress.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, Lagrangian
particles, surface film etc. and constraining or limiting the solution.
SourceFiles
incompressibleDriftFlux.C
See also
Foam::solvers::VoFSolver
Foam::solvers::twoPhaseVoFSolver
Foam::solvers::compressibleVoF
\*---------------------------------------------------------------------------*/
#ifndef incompressibleDriftFlux_H
#define incompressibleDriftFlux_H
#include "twoPhaseVoFSolver.H"
#include "incompressibleDriftFluxMixture.H"
#include "relativeVelocityModel.H"
#include "momentumTransportModel.H"
#include "compressibleMomentumTransportModels.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace solvers
{
/*---------------------------------------------------------------------------*\
Class incompressibleDriftFlux Declaration
\*---------------------------------------------------------------------------*/
class incompressibleDriftFlux
:
public twoPhaseVoFSolver
{
protected:
// Phase properties
//- The compressible two-phase mixture
incompressibleDriftFluxMixture& mixture;
// Thermophysical properties
//- Static pressure field
volScalarField p;
// Pressure reference
//- Pressure reference
Foam::pressureReference pressureReference_;
// Momentum transport
//- Pointer to the dispersed phase relative velocity model
autoPtr<relativeVelocityModel> relativeVelocity;
//- Pointer to the momentum transport model
autoPtr<compressible::momentumTransportModel> momentumTransport;
// Protected Member Functions
//- Return the pressure reference
virtual const Foam::pressureReference& pressureReference() const
{
return pressureReference_;
}
//- The flow is incompressible
virtual bool incompressible() const
{
return true;
}
//- Is the flow divergent?
// i.e. includes phase-fraction sources
virtual bool divergent() const
{
return fvModels().addsSupToField(alpha1.name());
}
//- Return the mixture compressibility/density
// Not required for incompressible fluids
virtual tmp<volScalarField> psiByRho() const
{
return tmp<volScalarField>(nullptr);
}
virtual tmp<surfaceScalarField> alphaPhi
(
const surfaceScalarField& phi,
const volScalarField& alpha,
const dictionary& alphaControls
);
//- Calculate the alpha equation sources
virtual void alphaSuSp
(
tmp<volScalarField::Internal>& Su,
tmp<volScalarField::Internal>& Sp
);
//- Correct the interface properties following mesh-change
// and phase-fraction update
virtual void correctInterface();
//- Return the interface surface tension force for the momentum equation
virtual tmp<surfaceScalarField> surfaceTensionForce() const;
//- Return the momentum equation stress term
virtual tmp<fvVectorMatrix> divDevTau(volVectorField& U)
{
return
relativeVelocity->divDevTau()
+ momentumTransport->divDevTau(U);
}
public:
//- Runtime type information
TypeName("incompressibleDriftFlux");
// Constructors
//- Construct from region mesh
incompressibleDriftFlux(fvMesh& mesh);
//- Disallow default bitwise copy construction
incompressibleDriftFlux(const incompressibleDriftFlux&) = delete;
//- Destructor
virtual ~incompressibleDriftFlux();
// Member Functions
//- Called at the start of the PIMPLE loop
virtual void prePredictor();
//- Construct and solve the energy equation,
// convert to temperature
// and update thermophysical and transport properties
virtual void thermophysicalPredictor();
//- Construct and solve the pressure equation in the PISO loop
virtual void pressureCorrector();
//- Correct the momentum and thermophysical transport modelling
virtual void postCorrector();
// Member Operators
//- Disallow default bitwise assignment
void operator=(const incompressibleDriftFlux&) = delete;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace solvers
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //