Files
OpenFOAM-12/src/mesh/snappyHexMesh/meshRefinement/meshRefinement.C
Henry Weller df6d3bf9d2 Renamed meshCellZones -> cellZones, meshFaceZones -> faceZones and meshPointZones -> pointZones
The prefix "mesh" was confusing and obviously relevant or helpful in
understanding the purpose or operation of these zone container classes.
2024-03-26 14:52:16 +00:00

2828 lines
75 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "meshRefinement.H"
#include "volMesh.H"
#include "volFields.H"
#include "surfaceMesh.H"
#include "syncTools.H"
#include "Time.H"
#include "refinementHistory.H"
#include "refinementSurfaces.H"
#include "refinementFeatures.H"
#include "decompositionMethod.H"
#include "regionSplit.H"
#include "fvMeshDistribute.H"
#include "indirectPrimitivePatch.H"
#include "polyTopoChange.H"
#include "removeCells.H"
#include "polyDistributionMap.H"
#include "localPointRegion.H"
#include "pointMesh.H"
#include "pointFields.H"
#include "slipPointPatchFields.H"
#include "fixedValuePointPatchFields.H"
#include "calculatedPointPatchFields.H"
#include "cyclicSlipPointPatchFields.H"
#include "processorPointPatch.H"
#include "globalIndex.H"
#include "meshTools.H"
#include "OFstream.H"
#include "geomDecomp.H"
#include "Random.H"
#include "searchableSurfaces.H"
#include "treeBoundBox.H"
#include "fvMeshTools.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(meshRefinement, 0);
template<>
const char* Foam::NamedEnum
<
Foam::meshRefinement::IOdebugType,
5
>::names[] =
{
"mesh",
"intersections",
"featureSeeds",
"attraction",
"layerInfo"
};
template<>
const char* Foam::NamedEnum
<
Foam::meshRefinement::IOoutputType,
1
>::names[] =
{
"layerInfo"
};
template<>
const char* Foam::NamedEnum
<
Foam::meshRefinement::IOwriteType,
5
>::names[] =
{
"mesh",
"noRefinement",
"scalarLevels",
"layerSets",
"layerFields"
};
}
const Foam::NamedEnum<Foam::meshRefinement::IOdebugType, 5>
Foam::meshRefinement::IOdebugTypeNames;
const Foam::NamedEnum<Foam::meshRefinement::IOoutputType, 1>
Foam::meshRefinement::IOoutputTypeNames;
const Foam::NamedEnum<Foam::meshRefinement::IOwriteType, 5>
Foam::meshRefinement::IOwriteTypeNames;
Foam::meshRefinement::writeType Foam::meshRefinement::writeLevel_;
Foam::meshRefinement::outputType Foam::meshRefinement::outputLevel_;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::meshRefinement::calcNeighbourData
(
labelList& neiLevel,
pointField& neiCc
) const
{
const labelList& cellLevel = meshCutter_.cellLevel();
const pointField& cellCentres = mesh_.cellCentres();
const label nBoundaryFaces = mesh_.nFaces() - mesh_.nInternalFaces();
if (neiLevel.size() != nBoundaryFaces || neiCc.size() != nBoundaryFaces)
{
FatalErrorInFunction
<< nBoundaryFaces << " neiLevel:" << neiLevel.size()
<< abort(FatalError);
}
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
labelHashSet addedPatchIDSet(meshedPatches());
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
const labelUList& faceCells = pp.faceCells();
const vectorField::subField faceCentres = pp.faceCentres();
const vectorField::subField faceAreas = pp.faceAreas();
label bFacei = pp.start() - mesh_.nInternalFaces();
if (pp.coupled())
{
forAll(faceCells, i)
{
neiLevel[bFacei] = cellLevel[faceCells[i]];
neiCc[bFacei] = cellCentres[faceCells[i]];
bFacei++;
}
}
else if (addedPatchIDSet.found(patchi))
{
// Face was introduced from cell-cell intersection. Try to
// reconstruct other side cell(centre). Three possibilities:
// - cells same size.
// - preserved cell smaller. Not handled.
// - preserved cell larger.
forAll(faceCells, i)
{
// Extrapolate the face centre.
const vector fn = faceAreas[i]/(mag(faceAreas[i]) + vSmall);
const label own = faceCells[i];
const label ownLevel = cellLevel[own];
const label faceLevel = meshCutter_.faceLevel(pp.start() + i);
// Normal distance from face centre to cell centre
scalar d = ((faceCentres[i] - cellCentres[own]) & fn);
if (faceLevel > ownLevel)
{
// Other cell more refined. Adjust normal distance
d *= 0.5;
}
neiLevel[bFacei] = faceLevel;
// Calculate other cell centre by extrapolation
neiCc[bFacei] = faceCentres[i] + d*fn;
bFacei++;
}
}
else
{
forAll(faceCells, i)
{
neiLevel[bFacei] = cellLevel[faceCells[i]];
neiCc[bFacei] = faceCentres[i];
bFacei++;
}
}
}
// Swap coupled boundaries. Apply separation to cc since is coordinate.
syncTools::swapBoundaryFacePositions(mesh_, neiCc);
syncTools::swapBoundaryFaceList(mesh_, neiLevel);
}
void Foam::meshRefinement::updateIntersections(const labelList& changedFaces)
{
const pointField& cellCentres = mesh_.cellCentres();
// Stats on edges to test. Count proc faces only once.
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
{
label nMasterFaces = 0;
forAll(isMasterFace, facei)
{
if (isMasterFace.get(facei) == 1)
{
nMasterFaces++;
}
}
reduce(nMasterFaces, sumOp<label>());
label nChangedFaces = 0;
forAll(changedFaces, i)
{
if (isMasterFace.get(changedFaces[i]) == 1)
{
nChangedFaces++;
}
}
reduce(nChangedFaces, sumOp<label>());
Info<< "Edge intersection testing:" << nl
<< " Number of edges : " << nMasterFaces << nl
<< " Number of edges to retest : " << nChangedFaces
<< endl;
}
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(mesh_.nFaces() - mesh_.nInternalFaces());
pointField neiCc(mesh_.nFaces() - mesh_.nInternalFaces());
calcNeighbourData(neiLevel, neiCc);
// Collect segments we want to test for
pointField start(changedFaces.size());
pointField end(changedFaces.size());
forAll(changedFaces, i)
{
const label facei = changedFaces[i];
const label own = mesh_.faceOwner()[facei];
start[i] = cellCentres[own];
if (mesh_.isInternalFace(facei))
{
end[i] = cellCentres[mesh_.faceNeighbour()[facei]];
}
else
{
end[i] = neiCc[facei-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(rootSmall*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
{
labelList surfaceLevel;
surfaces_.findHigherIntersection
(
start,
end,
labelList(start.size(), -1), // accept any intersection
surfaceHit,
surfaceLevel
);
}
// Keep just surface hit
forAll(surfaceHit, i)
{
surfaceIndex_[changedFaces[i]] = surfaceHit[i];
}
// Make sure both sides have same information. This should be
// case in general since same vectors but just to make sure.
syncTools::syncFaceList(mesh_, surfaceIndex_, maxEqOp<label>());
const label nHits = countHits();
const label nTotHits = returnReduce(nHits, sumOp<label>());
Info<< " Number of intersected edges : " << nTotHits << endl;
// Set files to same time as mesh
setInstance(mesh_.facesInstance());
}
void Foam::meshRefinement::testSyncPointList
(
const string& msg,
const polyMesh& mesh,
const List<scalar>& fld
)
{
if (fld.size() != mesh.nPoints())
{
FatalErrorInFunction
<< msg << endl
<< "fld size:" << fld.size() << " mesh points:" << mesh.nPoints()
<< abort(FatalError);
}
Pout<< "Checking field " << msg << endl;
scalarField minFld(fld);
syncTools::syncPointList
(
mesh,
minFld,
minEqOp<scalar>(),
great
);
scalarField maxFld(fld);
syncTools::syncPointList
(
mesh,
maxFld,
maxEqOp<scalar>(),
-great
);
forAll(minFld, pointi)
{
const scalar& minVal = minFld[pointi];
const scalar& maxVal = maxFld[pointi];
if (mag(minVal-maxVal) > small)
{
Pout<< msg << " at:" << mesh.points()[pointi] << nl
<< " minFld:" << minVal << nl
<< " maxFld:" << maxVal << nl
<< endl;
}
}
}
void Foam::meshRefinement::testSyncPointList
(
const string& msg,
const polyMesh& mesh,
const List<point>& fld
)
{
if (fld.size() != mesh.nPoints())
{
FatalErrorInFunction
<< msg << endl
<< "fld size:" << fld.size() << " mesh points:" << mesh.nPoints()
<< abort(FatalError);
}
Pout<< "Checking field " << msg << endl;
pointField minFld(fld);
syncTools::syncPointList
(
mesh,
minFld,
minMagSqrEqOp<point>(),
point(great, great, great)
);
pointField maxFld(fld);
syncTools::syncPointList
(
mesh,
maxFld,
maxMagSqrEqOp<point>(),
vector::zero
);
forAll(minFld, pointi)
{
const point& minVal = minFld[pointi];
const point& maxVal = maxFld[pointi];
if (mag(minVal-maxVal) > small)
{
Pout<< msg << " at:" << mesh.points()[pointi] << nl
<< " minFld:" << minVal << nl
<< " maxFld:" << maxVal << nl
<< endl;
}
}
}
void Foam::meshRefinement::checkData()
{
Pout<< "meshRefinement::checkData() : Checking refinement structure."
<< endl;
meshCutter_.checkMesh();
Pout<< "meshRefinement::checkData() : Checking refinement levels."
<< endl;
meshCutter_.checkRefinementLevels(1, labelList(0));
label nBnd = mesh_.nFaces() - mesh_.nInternalFaces();
Pout<< "meshRefinement::checkData() : Checking synchronisation."
<< endl;
// Check face centres
{
// Boundary face centres
pointField::subList boundaryFc
(
mesh_.faceCentres(),
nBnd,
mesh_.nInternalFaces()
);
// Get neighbouring face centres
pointField neiBoundaryFc(boundaryFc);
syncTools::syncBoundaryFacePositions
(
mesh_,
neiBoundaryFc,
eqOp<point>()
);
// Compare
testSyncBoundaryFaceList
(
mergeDistance_,
"testing faceCentres : ",
boundaryFc,
neiBoundaryFc
);
}
// Check meshRefinement
{
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(nBnd);
pointField neiCc(nBnd);
calcNeighbourData(neiLevel, neiCc);
// Collect segments we want to test for
pointField start(mesh_.nFaces());
pointField end(mesh_.nFaces());
forAll(start, facei)
{
start[facei] = mesh_.cellCentres()[mesh_.faceOwner()[facei]];
if (mesh_.isInternalFace(facei))
{
end[facei] = mesh_.cellCentres()[mesh_.faceNeighbour()[facei]];
}
else
{
end[facei] = neiCc[facei-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(rootSmall*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
{
labelList surfaceLevel;
surfaces_.findHigherIntersection
(
start,
end,
labelList(start.size(), -1), // accept any intersection
surfaceHit,
surfaceLevel
);
}
// Get the coupled hit
labelList neiHit
(
SubList<label>
(
surfaceHit,
nBnd,
mesh_.nInternalFaces()
)
);
syncTools::swapBoundaryFaceList(mesh_, neiHit);
// Check
forAll(surfaceHit, facei)
{
if (surfaceIndex_[facei] != surfaceHit[facei])
{
if (mesh_.isInternalFace(facei))
{
WarningInFunction
<< "Internal face:" << facei
<< " fc:" << mesh_.faceCentres()[facei]
<< " cached surfaceIndex_:" << surfaceIndex_[facei]
<< " current:" << surfaceHit[facei]
<< " ownCc:"
<< mesh_.cellCentres()[mesh_.faceOwner()[facei]]
<< " neiCc:"
<< mesh_.cellCentres()[mesh_.faceNeighbour()[facei]]
<< endl;
}
else if
(
surfaceIndex_[facei]
!= neiHit[facei-mesh_.nInternalFaces()]
)
{
WarningInFunction
<< "Boundary face:" << facei
<< " fc:" << mesh_.faceCentres()[facei]
<< " cached surfaceIndex_:" << surfaceIndex_[facei]
<< " current:" << surfaceHit[facei]
<< " ownCc:"
<< mesh_.cellCentres()[mesh_.faceOwner()[facei]]
<< " end:" << end[facei]
<< endl;
}
}
}
}
{
labelList::subList boundarySurface
(
surfaceIndex_,
mesh_.nFaces() - mesh_.nInternalFaces(),
mesh_.nInternalFaces()
);
labelList neiBoundarySurface(boundarySurface);
syncTools::swapBoundaryFaceList
(
mesh_,
neiBoundarySurface
);
// Compare
testSyncBoundaryFaceList
(
0, // tolerance
"testing surfaceIndex() : ",
boundarySurface,
neiBoundarySurface
);
}
// Find duplicate faces
Pout<< "meshRefinement::checkData() : Counting duplicate faces."
<< endl;
labelList duplicateFace
(
localPointRegion::findDuplicateFaces
(
mesh_,
identityMap(mesh_.nFaces() - mesh_.nInternalFaces())
+ mesh_.nInternalFaces()
)
);
// Count
{
label nDup = 0;
forAll(duplicateFace, i)
{
if (duplicateFace[i] != -1)
{
nDup++;
}
}
nDup /= 2; // will have counted both faces of duplicate
Pout<< "meshRefinement::checkData() : Found " << nDup
<< " duplicate pairs of faces." << endl;
}
}
void Foam::meshRefinement::setInstance(const fileName& inst)
{
meshCutter_.setInstance(inst);
surfaceIndex_.instance() = inst;
}
Foam::autoPtr<Foam::polyTopoChangeMap> Foam::meshRefinement::doRemoveCells
(
const labelList& cellsToRemove,
const labelList& exposedFaces,
const labelList& exposedPatchIDs,
removeCells& cellRemover
)
{
polyTopoChange meshMod(mesh_);
// Arbitrary: put exposed faces into last patch.
cellRemover.setRefinement
(
cellsToRemove,
exposedFaces,
exposedPatchIDs,
meshMod
);
// Change the mesh
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh_, true);
// Update fields
mesh_.topoChange(map);
// Reset the instance for if in overwrite mode
mesh_.setInstance(name());
setInstance(mesh_.facesInstance());
// Update local mesh data
cellRemover.topoChange(map);
// Update intersections. Recalculate intersections for exposed faces.
labelList newExposedFaces = renumber
(
map().reverseFaceMap(),
exposedFaces
);
// Pout<< "removeCells : updating intersections for "
// << newExposedFaces.size() << " newly exposed faces." << endl;
topoChange(map, newExposedFaces);
return map;
}
Foam::autoPtr<Foam::polyTopoChangeMap> Foam::meshRefinement::splitFaces
(
const labelList& splitFaces,
const labelPairList& splits
)
{
polyTopoChange meshMod(mesh_);
forAll(splitFaces, i)
{
const label facei = splitFaces[i];
const face& f = mesh_.faces()[facei];
// Split as start and end index in face
const labelPair& split = splits[i];
label nVerts = split[1] - split[0];
if (nVerts < 0)
{
nVerts += f.size();
}
nVerts += 1;
// Split into f0, f1
face f0(nVerts);
label fp = split[0];
forAll(f0, i)
{
f0[i] = f[fp];
fp = f.fcIndex(fp);
}
face f1(f.size() - f0.size() + 2);
fp = split[1];
forAll(f1, i)
{
f1[i] = f[fp];
fp = f.fcIndex(fp);
}
// Determine face properties
const label own = mesh_.faceOwner()[facei];
label nei = -1;
label patchi = -1;
if (facei >= mesh_.nInternalFaces())
{
patchi = mesh_.boundaryMesh().whichPatch(facei);
}
else
{
nei = mesh_.faceNeighbour()[facei];
}
if (debug)
{
Pout<< "face:" << facei << " verts:" << f
<< " split into f0:" << f0
<< " f1:" << f1 << endl;
}
// Change/add faces
meshMod.modifyFace
(
f0, // modified face
facei, // label of face
own, // owner
nei, // neighbour
false, // face flip
patchi // patch for face
);
meshMod.addFace
(
f1, // modified face
own, // owner
nei, // neighbour
facei, // master face
false, // face flip
patchi // patch for face
);
}
// Change the mesh (without keeping old points)
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh_, true);
// Update fields
mesh_.topoChange(map);
// Reset the instance for if in overwrite mode
mesh_.setInstance(name());
setInstance(mesh_.facesInstance());
// Update local mesh data
const labelList& oldToNew = map().reverseFaceMap();
labelList newSplitFaces(renumber(oldToNew, splitFaces));
// Add added faces (every splitFaces becomes two faces)
label sz = newSplitFaces.size();
newSplitFaces.setSize(2*sz);
forAll(map().faceMap(), facei)
{
label oldFacei = map().faceMap()[facei];
if (oldToNew[oldFacei] != facei)
{
// Added face
newSplitFaces[sz++] = facei;
}
}
topoChange(map, newSplitFaces);
return map;
}
//// Determine for multi-processor regions the lowest numbered cell on the
//// lowest numbered processor.
//void Foam::meshRefinement::getCoupledRegionMaster
//(
// const globalIndex& globalCells,
// const boolList& blockedFace,
// const regionSplit& globalRegion,
// Map<label>& regionToMaster
//) const
//{
// const polyBoundaryMesh& patches = mesh_.boundaryMesh();
//
// forAll(patches, patchi)
// {
// const polyPatch& pp = patches[patchi];
//
// if (isA<processorPolyPatch>(pp))
// {
// forAll(pp, i)
// {
// label facei = pp.start() + i;
//
// if (!blockedFace[facei])
// {
// // Only if there is a connection to the neighbour
// // will there be a multi-domain region; if not through
// // this face then through another.
//
// label celli = mesh_.faceOwner()[facei];
// label globalCelli = globalCells.toGlobal(celli);
//
// Map<label>::iterator iter =
// regionToMaster.find(globalRegion[celli]);
//
// if (iter != regionToMaster.end())
// {
// label master = iter();
// iter() = min(master, globalCelli);
// }
// else
// {
// regionToMaster.insert
// (
// globalRegion[celli],
// globalCelli
// );
// }
// }
// }
// }
// }
//
// // Do reduction
// Pstream::mapCombineGather(regionToMaster, minEqOp<label>());
// Pstream::mapCombineScatter(regionToMaster);
//}
//
//
//void Foam::meshRefinement::calcLocalRegions
//(
// const globalIndex& globalCells,
// const labelList& globalRegion,
// const Map<label>& coupledRegionToMaster,
// const scalarField& cellWeights,
//
// Map<label>& globalToLocalRegion,
// pointField& localPoints,
// scalarField& localWeights
//) const
//{
// globalToLocalRegion.resize(globalRegion.size());
// DynamicList<point> localCc(globalRegion.size()/2);
// DynamicList<scalar> localWts(globalRegion.size()/2);
//
// forAll(globalRegion, celli)
// {
// Map<label>::const_iterator fndMaster =
// coupledRegionToMaster.find(globalRegion[celli]);
//
// if (fndMaster != coupledRegionToMaster.end())
// {
// // Multi-processor region.
// if (globalCells.toGlobal(celli) == fndMaster())
// {
// // I am master. Allocate region for me.
// globalToLocalRegion.insert
// (
// globalRegion[celli],
// localCc.size()
// );
// localCc.append(mesh_.cellCentres()[celli]);
// localWts.append(cellWeights[celli]);
// }
// }
// else
// {
// // Single processor region.
// if
// (
// globalToLocalRegion.insert
// (
// globalRegion[celli],
// localCc.size()
// )
// )
// {
// localCc.append(mesh_.cellCentres()[celli]);
// localWts.append(cellWeights[celli]);
// }
// }
// }
//
// localPoints.transfer(localCc);
// localWeights.transfer(localWts);
//
// if (localPoints.size() != globalToLocalRegion.size())
// {
// FatalErrorInFunction
// << "localPoints:" << localPoints.size()
// << " globalToLocalRegion:" << globalToLocalRegion.size()
// << exit(FatalError);
// }
//}
//
//
//Foam::label Foam::meshRefinement::getShiftedRegion
//(
// const globalIndex& indexer,
// const Map<label>& globalToLocalRegion,
// const Map<label>& coupledRegionToShifted,
// const label globalRegion
//)
//{
// Map<label>::const_iterator iter =
// globalToLocalRegion.find(globalRegion);
//
// if (iter != globalToLocalRegion.end())
// {
// // Region is 'owned' locally. Convert local region index into global.
// return indexer.toGlobal(iter());
// }
// else
// {
// return coupledRegionToShifted[globalRegion];
// }
//}
//
//
//// Add if not yet present
//void Foam::meshRefinement::addUnique(const label elem, labelList& lst)
//{
// if (findIndex(lst, elem) == -1)
// {
// label sz = lst.size();
// lst.setSize(sz+1);
// lst[sz] = elem;
// }
//}
//
//
//void Foam::meshRefinement::calcRegionRegions
//(
// const labelList& globalRegion,
// const Map<label>& globalToLocalRegion,
// const Map<label>& coupledRegionToMaster,
// labelListList& regionRegions
//) const
//{
// // Global region indexing since we now know the shifted regions.
// globalIndex shiftIndexer(globalToLocalRegion.size());
//
// // Redo the coupledRegionToMaster to be in shifted region indexing.
// Map<label> coupledRegionToShifted(coupledRegionToMaster.size());
// forAllConstIter(Map<label>, coupledRegionToMaster, iter)
// {
// label region = iter.key();
//
// Map<label>::const_iterator fndRegion = globalToLocalRegion.find
// (region);
//
// if (fndRegion != globalToLocalRegion.end())
// {
// // A local cell is master of this region. Get its shifted region.
// coupledRegionToShifted.insert
// (
// region,
// shiftIndexer.toGlobal(fndRegion())
// );
// }
// Pstream::mapCombineGather(coupledRegionToShifted, minEqOp<label>());
// Pstream::mapCombineScatter(coupledRegionToShifted);
// }
//
//
// // Determine region-region connectivity.
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// // This is for all my regions (so my local ones or the ones I am master
// // of) the neighbouring region indices.
//
//
// // Transfer lists.
// PtrList<HashSet<edge, Hash<edge>>> regionConnectivity
// (Pstream::nProcs());
// forAll(regionConnectivity, proci)
// {
// if (proci != Pstream::myProcNo())
// {
// regionConnectivity.set
// (
// proci,
// new HashSet<edge, Hash<edge>>
// (
// coupledRegionToShifted.size()
// / Pstream::nProcs()
// )
// );
// }
// }
//
//
// // Connectivity. For all my local regions the connected regions.
// regionRegions.setSize(globalToLocalRegion.size());
//
// // Add all local connectivity to regionRegions; add all non-local
// // to the transferlists.
// for (label facei = 0; facei < mesh_.nInternalFaces(); facei++)
// {
// label ownRegion = globalRegion[mesh_.faceOwner()[facei]];
// label neiRegion = globalRegion[mesh_.faceNeighbour()[facei]];
//
// if (ownRegion != neiRegion)
// {
// label shiftOwnRegion = getShiftedRegion
// (
// shiftIndexer,
// globalToLocalRegion,
// coupledRegionToShifted,
// ownRegion
// );
// label shiftNeiRegion = getShiftedRegion
// (
// shiftIndexer,
// globalToLocalRegion,
// coupledRegionToShifted,
// neiRegion
// );
//
//
// // Connection between two regions. Send to owner of region.
// // - is ownRegion 'owned' by me
// // - is neiRegion 'owned' by me
//
// if (shiftIndexer.isLocal(shiftOwnRegion))
// {
// label localI = shiftIndexer.toLocal(shiftOwnRegion);
// addUnique(shiftNeiRegion, regionRegions[localI]);
// }
// else
// {
// label masterProc = shiftIndexer.whichProcID(shiftOwnRegion);
// regionConnectivity[masterProc].insert
// (
// edge(shiftOwnRegion, shiftNeiRegion)
// );
// }
//
// if (shiftIndexer.isLocal(shiftNeiRegion))
// {
// label localI = shiftIndexer.toLocal(shiftNeiRegion);
// addUnique(shiftOwnRegion, regionRegions[localI]);
// }
// else
// {
// label masterProc = shiftIndexer.whichProcID(shiftNeiRegion);
// regionConnectivity[masterProc].insert
// (
// edge(shiftOwnRegion, shiftNeiRegion)
// );
// }
// }
// }
//
//
// // Send
// forAll(regionConnectivity, proci)
// {
// if (proci != Pstream::myProcNo())
// {
// OPstream str(Pstream::commsTypes::blocking, proci);
// str << regionConnectivity[proci];
// }
// }
// // Receive
// forAll(regionConnectivity, proci)
// {
// if (proci != Pstream::myProcNo())
// {
// IPstream str(Pstream::commsTypes::blocking, proci);
// str >> regionConnectivity[proci];
// }
// }
//
// // Add to addressing.
// forAll(regionConnectivity, proci)
// {
// if (proci != Pstream::myProcNo())
// {
// for
// (
// HashSet<edge, Hash<edge>>::const_iterator iter =
// regionConnectivity[proci].begin();
// iter != regionConnectivity[proci].end();
// ++iter
// )
// {
// const edge& e = iter.key();
//
// bool someLocal = false;
// if (shiftIndexer.isLocal(e[0]))
// {
// label localI = shiftIndexer.toLocal(e[0]);
// addUnique(e[1], regionRegions[localI]);
// someLocal = true;
// }
// if (shiftIndexer.isLocal(e[1]))
// {
// label localI = shiftIndexer.toLocal(e[1]);
// addUnique(e[0], regionRegions[localI]);
// someLocal = true;
// }
//
// if (!someLocal)
// {
// FatalErrorInFunction
// << "Received from processor " << proci
// << " connection " << e
// << " where none of the elements is local to me."
// << abort(FatalError);
// }
// }
// }
// }
//}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::meshRefinement::meshRefinement
(
fvMesh& mesh,
const dictionary& refineDict,
const scalar mergeDistance,
const bool overwrite,
refinementSurfaces& surfaces,
const refinementFeatures& features,
const refinementRegions& shells
)
:
mesh_(mesh),
mergeDistance_(mergeDistance),
overwrite_(overwrite),
oldInstance_(mesh.pointsInstance()),
surfaces_(surfaces),
features_(features),
shells_(shells),
meshCutter_
(
mesh,
false // do not try to read history.
),
surfaceIndex_
(
IOobject
(
"surfaceIndex",
mesh_.facesInstance(),
fvMesh::meshSubDir,
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
labelList(mesh_.nFaces(), -1)
),
userFaceData_(0)
{
surfaces.setMinLevelFields
(
shells_,
meshCutter_.level0EdgeLength(),
refineDict.lookupOrDefault<Switch>("extendedRefinementSpan", true)
);
// recalculate intersections for all faces
updateIntersections(identityMap(mesh_.nFaces()));
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::label Foam::meshRefinement::countHits() const
{
// Stats on edges to test. Count proc faces only once.
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
label nHits = 0;
forAll(surfaceIndex_, facei)
{
if (surfaceIndex_[facei] >= 0 && isMasterFace.get(facei) == 1)
{
nHits++;
}
}
return nHits;
}
//// Determine distribution to move connected regions onto one processor.
//Foam::labelList Foam::meshRefinement::decomposeCombineRegions
//(
// const scalarField& cellWeights,
// const boolList& blockedFace,
// const List<labelPair>& explicitConnections,
// decompositionMethod& decomposer
//) const
//{
// // Determine global regions, separated by blockedFaces
// regionSplit globalRegion(mesh_, blockedFace, explicitConnections);
//
// // Now globalRegion has global region per cell. Problem is that
// // the region might span multiple domains so we want to get
// // a "region master" per domain. Note that multi-processor
// // regions can only occur on cells on coupled patches.
// // Note: since the number of regions does not change by this the
// // process can be seen as just a shift of a region onto a single
// // processor.
//
//
// // Global cell numbering engine
// globalIndex globalCells(mesh_.nCells());
//
//
// // Determine per coupled region the master cell (lowest numbered cell
// // on lowest numbered processor)
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// // (does not determine master for non-coupled=fully-local regions)
//
// Map<label> coupledRegionToMaster(mesh_.nFaces() - mesh_.nInternalFaces());
// getCoupledRegionMaster
// (
// globalCells,
// blockedFace,
// globalRegion,
// coupledRegionToMaster
// );
//
// // Determine my regions
// // ~~~~~~~~~~~~~~~~~~~~
// // These are the fully local ones or the coupled ones of which I am master
//
// Map<label> globalToLocalRegion;
// pointField localPoints;
// scalarField localWeights;
// calcLocalRegions
// (
// globalCells,
// globalRegion,
// coupledRegionToMaster,
// cellWeights,
//
// globalToLocalRegion,
// localPoints,
// localWeights
// );
//
//
//
// // Find distribution for regions
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// labelList regionDistribution;
//
// if (isA<geomDecomp>(decomposer))
// {
// regionDistribution = decomposer.decompose(localPoints, localWeights);
// }
// else
// {
// labelListList regionRegions;
// calcRegionRegions
// (
// globalRegion,
// globalToLocalRegion,
// coupledRegionToMaster,
//
// regionRegions
// );
//
// regionDistribution = decomposer.decompose
// (
// regionRegions,
// localPoints,
// localWeights
// );
// }
//
//
//
// // Convert region-based decomposition back to cell-based one
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// // Transfer destination processor back to all. Use global reduce for now.
// Map<label> regionToDist(coupledRegionToMaster.size());
// forAllConstIter(Map<label>, coupledRegionToMaster, iter)
// {
// label region = iter.key();
//
// Map<label>::const_iterator regionFnd = globalToLocalRegion.find
// (region);
//
// if (regionFnd != globalToLocalRegion.end())
// {
// // Master cell is local. Store my distribution.
// regionToDist.insert(iter.key(), regionDistribution[regionFnd()]);
// }
// else
// {
// // Master cell is not on this processor. Make sure it is
// // overridden.
// regionToDist.insert(iter.key(), labelMax);
// }
// }
// Pstream::mapCombineGather(regionToDist, minEqOp<label>());
// Pstream::mapCombineScatter(regionToDist);
//
//
// // Determine destination for all cells
// labelList distribution(mesh_.nCells());
//
// forAll(globalRegion, celli)
// {
// Map<label>::const_iterator fndRegion =
// regionToDist.find(globalRegion[celli]);
//
// if (fndRegion != regionToDist.end())
// {
// distribution[celli] = fndRegion();
// }
// else
// {
// // region is local to the processor.
// label localRegioni = globalToLocalRegion[globalRegion[celli]];
//
// distribution[celli] = regionDistribution[localRegioni];
// }
// }
//
// return distribution;
//}
Foam::autoPtr<Foam::polyDistributionMap> Foam::meshRefinement::balance
(
const bool keepZoneFaces,
const bool keepBaffles,
const scalarField& cellWeights,
decompositionMethod& decomposer,
fvMeshDistribute& distributor
)
{
autoPtr<polyDistributionMap> map;
if (Pstream::parRun())
{
// Wanted distribution
labelList distribution;
// Faces where owner and neighbour are not 'connected' so can
// go to different processors.
boolList blockedFace;
label nUnblocked = 0;
// Faces that move as block onto single processor
PtrList<labelList> specifiedProcessorFaces;
labelList specifiedProcessor;
// Pairs of baffles
List<labelPair> couples;
// Constraints from decomposeParDict
decomposer.setConstraints
(
mesh_,
blockedFace,
specifiedProcessorFaces,
specifiedProcessor,
couples
);
if (keepZoneFaces || keepBaffles)
{
if (keepZoneFaces)
{
// Determine decomposition to keep/move surface zones
// on one processor. The reason is that snapping will make these
// into baffles, move and convert them back so if they were
// proc boundaries after baffling&moving the points might be no
// longer synchronised so recoupling will fail. To prevent this
// keep owner&neighbour of such a surface zone on the same
// processor.
const PtrList<surfaceZonesInfo>& surfZones =
surfaces().surfZones();
const faceZones& fZones = mesh_.faceZones();
const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
// Get faces whose owner and neighbour should stay together,
// i.e. they are not 'blocked'.
forAll(surfZones, surfi)
{
const word& fzName = surfZones[surfi].faceZoneName();
if (fzName.size())
{
// Get zone
const faceZone& fZone = fZones[fzName];
forAll(fZone, i)
{
const label facei = fZone[i];
if (blockedFace[facei])
{
if
(
mesh_.isInternalFace(facei)
|| pbm[pbm.whichPatch(facei)].coupled()
)
{
blockedFace[facei] = false;
nUnblocked++;
}
}
}
}
}
// If the faceZones are not synchronised the blockedFace
// might not be synchronised. If you are sure the faceZones
// are synchronised remove below check.
syncTools::syncFaceList
(
mesh_,
blockedFace,
andEqOp<bool>() // combine operator
);
}
reduce(nUnblocked, sumOp<label>());
if (keepZoneFaces)
{
Info<< "Found " << nUnblocked
<< " zoned faces to keep together." << endl;
}
// Extend un-blockedFaces with any cyclics
{
boolList separatedCoupledFace(mesh_.nFaces(), false);
selectSeparatedCoupledFaces(separatedCoupledFace);
label nSeparated = 0;
forAll(separatedCoupledFace, facei)
{
if (separatedCoupledFace[facei])
{
if (blockedFace[facei])
{
blockedFace[facei] = false;
nSeparated++;
}
}
}
reduce(nSeparated, sumOp<label>());
Info<< "Found " << nSeparated
<< " separated coupled faces to keep together." << endl;
nUnblocked += nSeparated;
}
if (keepBaffles)
{
const label nBnd = mesh_.nFaces() - mesh_.nInternalFaces();
labelList coupledFace(mesh_.nFaces(), -1);
{
// Get boundary baffles that need to stay together
List<labelPair> allCouples
(
localPointRegion::findDuplicateFacePairs(mesh_)
);
// Merge with any couples from
// decompositionMethod::setConstraints
forAll(couples, i)
{
const labelPair& baffle = couples[i];
coupledFace[baffle.first()] = baffle.second();
coupledFace[baffle.second()] = baffle.first();
}
forAll(allCouples, i)
{
const labelPair& baffle = allCouples[i];
coupledFace[baffle.first()] = baffle.second();
coupledFace[baffle.second()] = baffle.first();
}
}
couples.setSize(nBnd);
label nCpl = 0;
forAll(coupledFace, facei)
{
if (coupledFace[facei] != -1 && facei < coupledFace[facei])
{
couples[nCpl++] = labelPair(facei, coupledFace[facei]);
}
}
couples.setSize(nCpl);
}
label nCouples = returnReduce(couples.size(), sumOp<label>());
if (keepBaffles)
{
Info<< "Found " << nCouples << " baffles to keep together."
<< endl;
}
// if (nUnblocked > 0 || nCouples > 0)
//{
// Info<< "Applying special decomposition to keep baffles"
// << " and zoned faces together." << endl;
//
// distribution = decomposeCombineRegions
// (
// cellWeights,
// blockedFace,
// couples,
// decomposer
// );
//
// labelList nProcCells(distributor.countCells(distribution));
// Pstream::listCombineGather(nProcCells, plusEqOp<label>());
// Pstream::listCombineScatter(nProcCells);
//
// Info<< "Calculated decomposition:" << endl;
// forAll(nProcCells, proci)
// {
// Info<< " " << proci << '\t' << nProcCells[proci]
// << endl;
// }
// Info<< endl;
//}
// else
//{
// // Normal decomposition
// distribution = decomposer.decompose
// (
// mesh_,
// mesh_.cellCentres(),
// cellWeights
// );
//}
}
// else
//{
// // Normal decomposition
// distribution = decomposer.decompose
// (
// mesh_,
// cellWeights
// );
//}
// Make sure blockedFace not set on couples
forAll(couples, i)
{
const labelPair& baffle = couples[i];
blockedFace[baffle.first()] = false;
blockedFace[baffle.second()] = false;
}
distribution = decomposer.decompose
(
mesh_,
cellWeights,
blockedFace,
specifiedProcessorFaces,
specifiedProcessor,
couples // explicit connections
);
if (debug)
{
labelList nProcCells(distributor.countCells(distribution));
Pout<< "Wanted distribution:" << nProcCells << endl;
Pstream::listCombineGather(nProcCells, plusEqOp<label>());
Pstream::listCombineScatter(nProcCells);
Pout<< "Wanted resulting decomposition:" << endl;
forAll(nProcCells, proci)
{
Pout<< " " << proci << '\t' << nProcCells[proci] << endl;
}
Pout<< endl;
}
mesh_.clearOut();
// Do actual sending/receiving of mesh
map = distributor.distribute(distribution);
// Update numbering of meshRefiner
distribute(map);
// Set correct instance (for if overwrite)
mesh_.setInstance(name());
setInstance(mesh_.facesInstance());
}
return map;
}
Foam::labelList Foam::meshRefinement::intersectedFaces() const
{
label nBoundaryFaces = 0;
forAll(surfaceIndex_, facei)
{
if (surfaceIndex_[facei] != -1)
{
nBoundaryFaces++;
}
}
labelList surfaceFaces(nBoundaryFaces);
nBoundaryFaces = 0;
forAll(surfaceIndex_, facei)
{
if (surfaceIndex_[facei] != -1)
{
surfaceFaces[nBoundaryFaces++] = facei;
}
}
return surfaceFaces;
}
Foam::labelList Foam::meshRefinement::intersectedPoints() const
{
const faceList& faces = mesh_.faces();
// Mark all points on faces that will become baffles
PackedBoolList isBoundaryPoint(mesh_.nPoints());
label nBoundaryPoints = 0;
forAll(surfaceIndex_, facei)
{
if (surfaceIndex_[facei] != -1)
{
const face& f = faces[facei];
forAll(f, fp)
{
if (isBoundaryPoint.set(f[fp], 1u))
{
nBoundaryPoints++;
}
}
}
}
//// Insert all meshed patches.
// labelList adaptPatchIDs(meshedPatches());
// forAll(adaptPatchIDs, i)
//{
// label patchi = adaptPatchIDs[i];
//
// if (patchi != -1)
// {
// const polyPatch& pp = mesh_.boundaryMesh()[patchi];
//
// label facei = pp.start();
//
// forAll(pp, i)
// {
// const face& f = faces[facei];
//
// forAll(f, fp)
// {
// if (isBoundaryPoint.set(f[fp], 1u))
// nBoundaryPoints++;
// }
// }
// facei++;
// }
// }
//}
// Pack
labelList boundaryPoints(nBoundaryPoints);
nBoundaryPoints = 0;
forAll(isBoundaryPoint, pointi)
{
if (isBoundaryPoint.get(pointi) == 1u)
{
boundaryPoints[nBoundaryPoints++] = pointi;
}
}
return boundaryPoints;
}
Foam::autoPtr<Foam::indirectPrimitivePatch> Foam::meshRefinement::makePatch
(
const polyMesh& mesh,
const labelList& patchIDs
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Count faces.
label nFaces = 0;
forAll(patchIDs, i)
{
const polyPatch& pp = patches[patchIDs[i]];
nFaces += pp.size();
}
// Collect faces.
labelList addressing(nFaces);
nFaces = 0;
forAll(patchIDs, i)
{
const polyPatch& pp = patches[patchIDs[i]];
label meshFacei = pp.start();
forAll(pp, i)
{
addressing[nFaces++] = meshFacei++;
}
}
return autoPtr<indirectPrimitivePatch>
(
new indirectPrimitivePatch
(
IndirectList<face>(mesh.faces(), addressing),
mesh.points()
)
);
}
Foam::tmp<Foam::pointVectorField> Foam::meshRefinement::makeDisplacementField
(
const pointMesh& pMesh,
const labelList& adaptPatchIDs
)
{
// Construct displacement field.
const pointBoundaryMesh& pointPatches = pMesh.boundary();
wordList patchFieldTypes
(
pointPatches.size(),
slipPointPatchVectorField::typeName
);
forAll(adaptPatchIDs, i)
{
patchFieldTypes[adaptPatchIDs[i]] =
fixedValuePointPatchVectorField::typeName;
}
forAll(pointPatches, patchi)
{
if (isA<processorPointPatch>(pointPatches[patchi]))
{
patchFieldTypes[patchi] = calculatedPointPatchVectorField::typeName;
}
else if (isA<cyclicPointPatch>(pointPatches[patchi]))
{
patchFieldTypes[patchi] = cyclicSlipPointPatchVectorField::typeName;
}
}
// Note: time().name() instead of meshRefinement::name() since
// postprocessable field.
tmp<pointVectorField> tfld
(
pointVectorField::New
(
"pointDisplacement",
pMesh,
dimensionedVector(dimLength, Zero),
patchFieldTypes
)
);
return tfld;
}
void Foam::meshRefinement::checkCoupledFaceZones(const polyMesh& mesh)
{
const faceZones& fZones = mesh.faceZones();
// Check any zones are present anywhere and in same order
{
List<wordList> zoneNames(Pstream::nProcs());
zoneNames[Pstream::myProcNo()] = fZones.names();
Pstream::gatherList(zoneNames);
Pstream::scatterList(zoneNames);
// All have same data now. Check.
forAll(zoneNames, proci)
{
if (proci != Pstream::myProcNo())
{
if (zoneNames[proci] != zoneNames[Pstream::myProcNo()])
{
FatalErrorInFunction
<< "faceZones are not synchronised on processors." << nl
<< "Processor " << proci << " has faceZones "
<< zoneNames[proci] << nl
<< "Processor " << Pstream::myProcNo()
<< " has faceZones "
<< zoneNames[Pstream::myProcNo()] << nl
<< exit(FatalError);
}
}
}
}
// Check that coupled faces are present on both sides.
labelList faceToZone(mesh.nFaces() - mesh.nInternalFaces(), -1);
forAll(fZones, zonei)
{
const faceZone& fZone = fZones[zonei];
forAll(fZone, i)
{
label bFacei = fZone[i]-mesh.nInternalFaces();
if (bFacei >= 0)
{
if (faceToZone[bFacei] == -1)
{
faceToZone[bFacei] = zonei;
}
else if (faceToZone[bFacei] == zonei)
{
FatalErrorInFunction
<< "Face " << fZone[i] << " in zone "
<< fZone.name()
<< " is twice in zone!"
<< abort(FatalError);
}
else
{
FatalErrorInFunction
<< "Face " << fZone[i] << " in zone "
<< fZone.name()
<< " is also in zone "
<< fZones[faceToZone[bFacei]].name()
<< abort(FatalError);
}
}
}
}
labelList neiFaceToZone(faceToZone);
syncTools::swapBoundaryFaceList(mesh, neiFaceToZone);
forAll(faceToZone, i)
{
if (faceToZone[i] != neiFaceToZone[i])
{
FatalErrorInFunction
<< "Face " << mesh.nInternalFaces() + i
<< " is in zone " << faceToZone[i]
<< ", its coupled face is in zone " << neiFaceToZone[i]
<< abort(FatalError);
}
}
}
void Foam::meshRefinement::calculateEdgeWeights
(
const polyMesh& mesh,
const PackedBoolList& isMasterEdge,
const labelList& meshPoints,
const edgeList& edges,
scalarField& edgeWeights,
scalarField& invSumWeight
)
{
const pointField& pts = mesh.points();
// Calculate edgeWeights and inverse sum of edge weights
edgeWeights.setSize(isMasterEdge.size());
invSumWeight.setSize(meshPoints.size());
forAll(edges, edgei)
{
const edge& e = edges[edgei];
scalar eMag = max
(
small,
mag
(
pts[meshPoints[e[1]]]
- pts[meshPoints[e[0]]]
)
);
edgeWeights[edgei] = 1.0/eMag;
}
// Sum per point all edge weights
weightedSum
(
mesh,
isMasterEdge,
meshPoints,
edges,
edgeWeights,
scalarField(meshPoints.size(), 1.0), // data
invSumWeight
);
// Inplace invert
forAll(invSumWeight, pointi)
{
scalar w = invSumWeight[pointi];
if (w > 0.0)
{
invSumWeight[pointi] = 1.0/w;
}
}
}
Foam::label Foam::meshRefinement::addMeshedPatch
(
const word& name,
const dictionary& patchInfo
)
{
const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
const label meshedI = findIndex(meshedPatches_, name);
if (meshedI != -1)
{
// Already there. Get corresponding polypatch
return pbm.findIndex(name);
}
else
{
// Add patch
label patchi = pbm.findIndex(name);
if (patchi == -1)
{
patchi = pbm.size();
forAll(pbm, i)
{
const polyPatch& pp = pbm[i];
if (isA<processorPolyPatch>(pp))
{
patchi = i;
break;
}
}
dictionary patchDict(patchInfo);
patchDict.set("nFaces", 0);
patchDict.set("startFace", 0);
autoPtr<polyPatch> ppPtr
(
polyPatch::New
(
name,
patchDict,
0,
pbm
)
);
mesh_.addPatch
(
patchi,
ppPtr(),
dictionary(), // optional field values
fvPatchField<scalar>::calculatedType(),
true // validBoundary
);
}
// Store
meshedPatches_.append(name);
return patchi;
}
}
Foam::labelList Foam::meshRefinement::meshedPatches() const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
DynamicList<label> patchIDs(meshedPatches_.size());
forAll(meshedPatches_, i)
{
label patchi = patches.findIndex(meshedPatches_[i]);
if (patchi == -1)
{
FatalErrorInFunction
<< "Problem : did not find patch " << meshedPatches_[i]
<< endl << "Valid patches are " << patches.names()
<< abort(FatalError);
}
if (!polyPatch::constraintType(patches[patchi].type()))
{
patchIDs.append(patchi);
}
}
return patchIDs;
}
void Foam::meshRefinement::selectSeparatedCoupledFaces(boolList& selected) const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
forAll(patches, patchi)
{
if (isA<coupledPolyPatch>(patches[patchi]))
{
const coupledPolyPatch& cpp =
refCast<const coupledPolyPatch>(patches[patchi]);
if (cpp.transform().transformsPosition())
{
forAll(cpp, i)
{
selected[cpp.start() + i] = true;
}
}
}
}
}
Foam::label Foam::meshRefinement::findRegion
(
const polyMesh& mesh,
const labelList& cellRegion,
const vector& perturbVec,
const point& location
)
{
label regioni = -1;
label celli = mesh.findCell(location);
if (celli != -1)
{
regioni = cellRegion[celli];
}
reduce(regioni, maxOp<label>());
if (regioni == -1)
{
// See if we can perturb a bit
celli = mesh.findCell(location + perturbVec);
if (celli != -1)
{
regioni = cellRegion[celli];
}
reduce(regioni, maxOp<label>());
}
return regioni;
}
void Foam::meshRefinement::findRegions
(
const polyMesh& mesh,
labelList& cellRegion,
const vector& perturbVec,
const refinementParameters::cellSelectionPoints& selectionPoints
)
{
// List of all cells selected cells
PackedBoolList selectedCells(mesh.nCells());
if (selectionPoints.outside().size())
{
// Select all cells before removing those in regions
// containing locations in selectionPoints.outside()
selectedCells = true;
// For each of the selectionPoints.outside() find the corresponding
// region and deselect the cells
forAll(selectionPoints.outside(), i)
{
// Find the region corresponding to the selectionPoints.outside()[i]
const label regioni = findRegion
(
mesh,
cellRegion,
perturbVec,
selectionPoints.outside()[i]
);
// Deselect the cells in the region from selectedCells
forAll(cellRegion, celli)
{
if (cellRegion[celli] == regioni)
{
selectedCells[celli] = false;
}
}
}
}
// For each of the selectionPoints.inside() find the corresponding region
// and select the cells
forAll(selectionPoints.inside(), i)
{
// Find the region corresponding to the selectionPoints.inside()[i]
const label regioni = findRegion
(
mesh,
cellRegion,
perturbVec,
selectionPoints.inside()[i]
);
// Add all the cells in the region to selectedCells
forAll(cellRegion, celli)
{
if (cellRegion[celli] == regioni)
{
selectedCells[celli] = true;
}
}
}
// For all unmarked cells set cellRegion to -1
forAll(selectedCells, celli)
{
if (!selectedCells[celli])
{
cellRegion[celli] = -1;
}
}
}
Foam::autoPtr<Foam::polyTopoChangeMap> Foam::meshRefinement::splitMeshRegions
(
const labelList& globalToMasterPatch,
const labelList& globalToSlavePatch,
const refinementParameters::cellSelectionPoints& selectionPoints
)
{
// Force calculation of face decomposition (used in findCell)
(void)mesh_.tetBasePtIs();
// Determine connected regions. regionSplit is the labelList with the
// region per cell.
boolList blockedFace(mesh_.nFaces(), false);
selectSeparatedCoupledFaces(blockedFace);
regionSplit cellRegion(mesh_, blockedFace);
findRegions
(
mesh_,
cellRegion,
mergeDistance_*vector::one,
selectionPoints
);
// Subset
// ~~~~~~
// Get cells to remove
DynamicList<label> cellsToRemove(mesh_.nCells());
forAll(cellRegion, celli)
{
if (cellRegion[celli] == -1)
{
cellsToRemove.append(celli);
}
}
cellsToRemove.shrink();
const label nCellsToRemove = returnReduce
(
cellsToRemove.size(),
sumOp<label>()
);
if (nCellsToRemove)
{
label nCellsToKeep = mesh_.nCells() - cellsToRemove.size();
reduce(nCellsToKeep, sumOp<label>());
Info<< "Keeping all cells in regions containing any point in "
<< selectionPoints.inside() << endl
<< "Selected for keeping : " << nCellsToKeep << " cells." << endl;
// Remove cells
removeCells cellRemover(mesh_);
const labelList exposedFaces
(
cellRemover.getExposedFaces(cellsToRemove)
);
labelList exposedPatch;
const label nExposedFaces =
returnReduce(exposedFaces.size(), sumOp<label>());
if (nExposedFaces)
{
// Patch for exposed faces for lack of anything sensible.
label defaultPatch = 0;
if (globalToMasterPatch.size())
{
defaultPatch = globalToMasterPatch[0];
}
WarningInFunction
<< "Removing non-reachable cells exposes "
<< nExposedFaces << " internal or coupled faces." << endl
<< " These get put into patch " << defaultPatch << endl;
exposedPatch.setSize(exposedFaces.size(), defaultPatch);
}
return doRemoveCells
(
cellsToRemove,
exposedFaces,
exposedPatch,
cellRemover
);
}
else
{
return autoPtr<polyTopoChangeMap>();
}
}
void Foam::meshRefinement::distribute(const polyDistributionMap& map)
{
// mesh_ already distributed; distribute my member data
// surfaceQueries_ ok.
// refinement
meshCutter_.distribute(map);
// surfaceIndex is face data.
map.distributeFaceData(surfaceIndex_);
// maintainedFaces are indices of faces.
forAll(userFaceData_, i)
{
map.distributeFaceData(userFaceData_[i].second());
}
// Redistribute surface and any fields on it.
{
// Get local mesh bounding box. Single box for now.
List<treeBoundBox> meshBb(1);
treeBoundBox& bb = meshBb[0];
bb = treeBoundBox(mesh_.points()).extend(1e-4);
// Distribute all geometry (so refinementSurfaces and refinementRegions)
searchableSurfaces& geometry =
const_cast<searchableSurfaces&>(surfaces_.geometry());
forAll(geometry, i)
{
autoPtr<distributionMap> faceMap;
autoPtr<distributionMap> pointMap;
geometry[i].distribute
(
meshBb,
false, // do not keep outside triangles
faceMap,
pointMap
);
if (faceMap.valid())
{
// (ab)use the instance() to signal current modification time
geometry[i].instance() = geometry[i].time().name();
}
faceMap.clear();
pointMap.clear();
}
}
}
void Foam::meshRefinement::topoChange
(
const polyTopoChangeMap& map,
const labelList& changedFaces
)
{
Map<label> dummyMap(0);
topoChange(map, changedFaces, dummyMap, dummyMap, dummyMap);
}
void Foam::meshRefinement::storeData
(
const labelList& pointsToStore,
const labelList& facesToStore,
const labelList& cellsToStore
)
{
// For now only meshCutter has storable/retrievable data.
meshCutter_.storeData
(
pointsToStore,
facesToStore,
cellsToStore
);
}
void Foam::meshRefinement::topoChange
(
const polyTopoChangeMap& map,
const labelList& changedFaces,
const Map<label>& pointsToRestore,
const Map<label>& facesToRestore,
const Map<label>& cellsToRestore
)
{
// For now only meshCutter has storable/retrievable data.
// Update numbering of cells/vertices.
meshCutter_.topoChange
(
map,
pointsToRestore,
facesToRestore,
cellsToRestore
);
// Update surfaceIndex
updateList(map.faceMap(), label(-1), surfaceIndex_);
// Update cached intersection information
updateIntersections(changedFaces);
// Update maintained faces
forAll(userFaceData_, i)
{
labelList& data = userFaceData_[i].second();
if (userFaceData_[i].first() == KEEPALL)
{
// extend list with face-from-face data
updateList(map.faceMap(), label(-1), data);
}
else if (userFaceData_[i].first() == MASTERONLY)
{
// keep master only
labelList newFaceData(map.faceMap().size(), -1);
forAll(newFaceData, facei)
{
label oldFacei = map.faceMap()[facei];
if (oldFacei >= 0 && map.reverseFaceMap()[oldFacei] == facei)
{
newFaceData[facei] = data[oldFacei];
}
}
data.transfer(newFaceData);
}
else
{
// remove any face that has been refined i.e. referenced more than
// once.
// 1. Determine all old faces that get referenced more than once.
// These get marked with -1 in reverseFaceMap
labelList reverseFaceMap(map.reverseFaceMap());
forAll(map.faceMap(), facei)
{
const label oldFacei = map.faceMap()[facei];
if (oldFacei >= 0)
{
if (reverseFaceMap[oldFacei] != facei)
{
// facei is slave face. Mark old face.
reverseFaceMap[oldFacei] = -1;
}
}
}
// 2. Map only faces with intact reverseFaceMap
labelList newFaceData(map.faceMap().size(), -1);
forAll(newFaceData, facei)
{
const label oldFacei = map.faceMap()[facei];
if (oldFacei >= 0)
{
if (reverseFaceMap[oldFacei] == facei)
{
newFaceData[facei] = data[oldFacei];
}
}
}
data.transfer(newFaceData);
}
}
}
bool Foam::meshRefinement::write() const
{
bool writeOk = mesh_.write();
// Make sure that any distributed surfaces (so ones which probably have
// been changed) get written as well.
// Note: should ideally have some 'modified' flag to say whether it
// has been changed or not.
searchableSurfaces& geometry =
const_cast<searchableSurfaces&>(surfaces_.geometry());
forAll(geometry, i)
{
searchableSurface& s = geometry[i];
// Check if instance() of surface is not constant or system.
// Is good hint that surface is distributed.
if
(
s.instance() != s.time().system()
&& s.instance() != s.time().caseSystem()
&& s.instance() != s.time().constant()
&& s.instance() != s.time().caseConstant()
)
{
// Make sure it gets written to current time, not constant.
s.instance() = s.time().name();
writeOk = writeOk && s.write();
}
}
return writeOk;
}
Foam::PackedBoolList Foam::meshRefinement::getMasterPoints
(
const polyMesh& mesh,
const labelList& meshPoints
)
{
const globalIndex globalPoints(meshPoints.size());
labelList myPoints(meshPoints.size());
forAll(meshPoints, pointi)
{
myPoints[pointi] = globalPoints.toGlobal(pointi);
}
syncTools::syncPointList
(
mesh,
meshPoints,
myPoints,
minEqOp<label>(),
labelMax
);
PackedBoolList isPatchMasterPoint(meshPoints.size());
forAll(meshPoints, pointi)
{
if (myPoints[pointi] == globalPoints.toGlobal(pointi))
{
isPatchMasterPoint[pointi] = true;
}
}
return isPatchMasterPoint;
}
Foam::PackedBoolList Foam::meshRefinement::getMasterEdges
(
const polyMesh& mesh,
const labelList& meshEdges
)
{
const globalIndex globalEdges(meshEdges.size());
labelList myEdges(meshEdges.size());
forAll(meshEdges, edgei)
{
myEdges[edgei] = globalEdges.toGlobal(edgei);
}
syncTools::syncEdgeList
(
mesh,
meshEdges,
myEdges,
minEqOp<label>(),
labelMax
);
PackedBoolList isMasterEdge(meshEdges.size());
forAll(meshEdges, edgei)
{
if (myEdges[edgei] == globalEdges.toGlobal(edgei))
{
isMasterEdge[edgei] = true;
}
}
return isMasterEdge;
}
void Foam::meshRefinement::printMeshInfo(const bool debug, const string& msg)
const
{
const globalMeshData& pData = mesh_.globalData();
if (debug)
{
Pout<< msg.c_str()
<< " : cells(local):" << mesh_.nCells()
<< " faces(local):" << mesh_.nFaces()
<< " points(local):" << mesh_.nPoints()
<< endl;
}
{
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
label nMasterFaces = 0;
forAll(isMasterFace, i)
{
if (isMasterFace[i])
{
nMasterFaces++;
}
}
PackedBoolList isMeshMasterPoint(syncTools::getMasterPoints(mesh_));
label nMasterPoints = 0;
forAll(isMeshMasterPoint, i)
{
if (isMeshMasterPoint[i])
{
nMasterPoints++;
}
}
Info<< msg.c_str()
<< " : cells:" << pData.nTotalCells()
<< " faces:" << returnReduce(nMasterFaces, sumOp<label>())
<< " points:" << returnReduce(nMasterPoints, sumOp<label>())
<< endl;
}
// if (debug)
{
const labelList& cellLevel = meshCutter_.cellLevel();
labelList nCells(gMax(cellLevel) + 1, 0);
forAll(cellLevel, celli)
{
nCells[cellLevel[celli]]++;
}
Pstream::listCombineGather(nCells, plusEqOp<label>());
Pstream::listCombineScatter(nCells);
Info<< "Cells per refinement level:" << endl;
forAll(nCells, leveli)
{
Info<< " " << leveli << '\t' << nCells[leveli]
<< endl;
}
}
}
Foam::word Foam::meshRefinement::name() const
{
if (overwrite_ && mesh_.time().timeIndex() == 0)
{
return oldInstance_;
}
else
{
return mesh_.time().name();
}
}
void Foam::meshRefinement::dumpRefinementLevel() const
{
// Note: use time().name(), not meshRefinement::name()
// so as to dump the fields to 0, not to constant.
{
volScalarField volRefLevel
(
IOobject
(
"cellLevel",
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh_,
dimensionedScalar(dimless, 0)
);
const labelList& cellLevel = meshCutter_.cellLevel();
forAll(volRefLevel, celli)
{
volRefLevel[celli] = cellLevel[celli];
}
volRefLevel.write();
}
// Dump pointLevel
{
const pointMesh& pMesh = pointMesh::New(mesh_);
pointScalarField pointRefLevel
(
IOobject
(
"pointLevel",
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pMesh,
dimensionedScalar(dimless, 0)
);
const labelList& pointLevel = meshCutter_.pointLevel();
forAll(pointRefLevel, pointi)
{
pointRefLevel[pointi] = pointLevel[pointi];
}
pointRefLevel.write();
}
}
void Foam::meshRefinement::dumpIntersections(const fileName& prefix) const
{
{
const pointField& cellCentres = mesh_.cellCentres();
OFstream str(prefix + "_edges.obj");
label vertI = 0;
Pout<< "meshRefinement::dumpIntersections :"
<< " Writing cellcentre-cellcentre intersections to file "
<< str.name() << endl;
// Redo all intersections
// ~~~~~~~~~~~~~~~~~~~~~~
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(mesh_.nFaces() - mesh_.nInternalFaces());
pointField neiCc(mesh_.nFaces() - mesh_.nInternalFaces());
calcNeighbourData(neiLevel, neiCc);
labelList intersectionFaces(intersectedFaces());
// Collect segments we want to test for
pointField start(intersectionFaces.size());
pointField end(intersectionFaces.size());
forAll(intersectionFaces, i)
{
const label facei = intersectionFaces[i];
start[i] = cellCentres[mesh_.faceOwner()[facei]];
if (mesh_.isInternalFace(facei))
{
end[i] = cellCentres[mesh_.faceNeighbour()[facei]];
}
else
{
end[i] = neiCc[facei-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(rootSmall*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
List<pointIndexHit> surfaceHitInfo;
surfaces_.findAnyIntersection
(
start,
end,
surfaceHit,
surfaceHitInfo
);
forAll(intersectionFaces, i)
{
if (surfaceHit[i] != -1)
{
meshTools::writeOBJ(str, start[i]);
vertI++;
meshTools::writeOBJ(str, surfaceHitInfo[i].hitPoint());
vertI++;
meshTools::writeOBJ(str, end[i]);
vertI++;
str << "l " << vertI-2 << ' ' << vertI-1 << nl
<< "l " << vertI-1 << ' ' << vertI << nl;
}
}
}
Pout<< endl;
}
void Foam::meshRefinement::write
(
const debugType debugFlags,
const writeType writeFlags,
const fileName& prefix
) const
{
if (writeFlags & WRITEMESH)
{
write();
}
if (writeFlags && !(writeFlags & NOWRITEREFINEMENT))
{
meshCutter_.write();
surfaceIndex_.write();
}
if (writeFlags & WRITELEVELS)
{
dumpRefinementLevel();
}
if (debugFlags & OBJINTERSECTIONS && prefix.size())
{
dumpIntersections(prefix);
}
}
Foam::meshRefinement::writeType Foam::meshRefinement::writeLevel()
{
return writeLevel_;
}
void Foam::meshRefinement::writeLevel(const writeType flags)
{
writeLevel_ = flags;
}
Foam::meshRefinement::outputType Foam::meshRefinement::outputLevel()
{
return outputLevel_;
}
void Foam::meshRefinement::outputLevel(const outputType flags)
{
outputLevel_ = flags;
}
// ************************************************************************* //