Files
OpenFOAM-12/applications/solvers/modules/multiphaseEuler/phaseSystems/phaseModel/MovingPhaseModel/MovingPhaseModel.C
Henry Weller e33b53c7c7 CorrectPhi: Change the divU argument to autoPtr<volScalarField>
If divU is valid the velocity divergence is included in the pcorr equation.
This simplifies the logic in multiphase moveMesh functions supporting
incompressible (with or without mass sources) and compressible fluids.
2023-03-31 08:53:59 +01:00

586 lines
13 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MovingPhaseModel.H"
#include "phaseSystem.H"
#include "fixedValueFvPatchFields.H"
#include "slipFvPatchFields.H"
#include "partialSlipFvPatchFields.H"
#include "fvmDdt.H"
#include "fvmDiv.H"
#include "fvmSup.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcFlux.H"
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
template<class BasePhaseModel>
Foam::tmp<Foam::surfaceScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::phi(const volVectorField& U) const
{
word phiName(IOobject::groupName("phi", this->name()));
typeIOobject<surfaceScalarField> phiHeader
(
phiName,
U.mesh().time().name(),
U.mesh(),
IOobject::NO_READ
);
if (phiHeader.headerOk())
{
Info<< "Reading face flux field " << phiName << endl;
return tmp<surfaceScalarField>
(
new surfaceScalarField
(
IOobject
(
phiName,
U.mesh().time().name(),
U.mesh(),
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
U.mesh()
)
);
}
else
{
Info<< "Calculating face flux field " << phiName << endl;
wordList phiTypes
(
U.boundaryField().size(),
calculatedFvPatchScalarField::typeName
);
forAll(U.boundaryField(), patchi)
{
if (!U.boundaryField()[patchi].assignable())
{
phiTypes[patchi] = fixedValueFvPatchScalarField::typeName;
}
}
return tmp<surfaceScalarField>
(
new surfaceScalarField
(
IOobject
(
phiName,
U.mesh().time().name(),
U.mesh(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::flux(U),
phiTypes
)
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class BasePhaseModel>
Foam::MovingPhaseModel<BasePhaseModel>::MovingPhaseModel
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
)
:
BasePhaseModel(fluid, phaseName, referencePhase, index),
U_
(
IOobject
(
IOobject::groupName("U", this->name()),
fluid.mesh().time().name(),
fluid.mesh(),
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
fluid.mesh()
),
phi_(phi(U_)),
alphaPhi_
(
IOobject
(
IOobject::groupName("alphaPhi", this->name()),
fluid.mesh().time().name(),
fluid.mesh()
),
fluid.mesh(),
dimensionedScalar(dimensionSet(0, 3, -1, 0, 0), 0)
),
alphaRhoPhi_
(
IOobject
(
IOobject::groupName("alphaRhoPhi", this->name()),
fluid.mesh().time().name(),
fluid.mesh()
),
fluid.mesh(),
dimensionedScalar(dimensionSet(1, 0, -1, 0, 0), 0)
),
Uf_(nullptr),
DUDt_(nullptr),
DUDtf_(nullptr),
divU_(nullptr),
momentumTransport_
(
phaseCompressible::momentumTransportModel::New
(
*this,
this->thermo().rho(),
U_,
alphaRhoPhi_,
phi_,
*this
)
),
thermophysicalTransport_
(
PhaseThermophysicalTransportModel
<
phaseCompressible::momentumTransportModel,
transportThermoModel
>::New(momentumTransport_, this->thermo_)
),
continuityError_
(
IOobject
(
IOobject::groupName("continuityError", this->name()),
fluid.mesh().time().name(),
fluid.mesh()
),
fluid.mesh(),
dimensionedScalar(dimDensity/dimTime, 0)
),
K_(nullptr)
{
phi_.writeOpt() = IOobject::AUTO_WRITE;
if (fluid.mesh().dynamic() || this->fluid().MRF().size())
{
Uf_ = new surfaceVectorField
(
IOobject
(
IOobject::groupName("Uf", this->name()),
fluid.mesh().time().name(),
fluid.mesh(),
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fvc::interpolate(U_)
);
}
correctKinematics();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class BasePhaseModel>
Foam::MovingPhaseModel<BasePhaseModel>::~MovingPhaseModel()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correctContinuityError
(
const volScalarField& source
)
{
volScalarField& rho = this->thermoRef().rho();
continuityError_ = fvc::ddt(*this, rho) + fvc::div(alphaRhoPhi_) - source;
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correct()
{
BasePhaseModel::correct();
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correctKinematics()
{
BasePhaseModel::correctKinematics();
if (DUDt_.valid())
{
DUDt_.clear();
DUDt();
}
if (DUDtf_.valid())
{
DUDtf_.clear();
DUDtf();
}
if (K_.valid())
{
K_.ref() = 0.5*magSqr(this->U());
}
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::predictMomentumTransport()
{
BasePhaseModel::predictMomentumTransport();
momentumTransport_->predict();
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::predictThermophysicalTransport()
{
BasePhaseModel::predictThermophysicalTransport();
thermophysicalTransport_->predict();
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correctMomentumTransport()
{
BasePhaseModel::correctMomentumTransport();
momentumTransport_->correct();
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correctThermophysicalTransport()
{
BasePhaseModel::correctThermophysicalTransport();
thermophysicalTransport_->correct();
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::correctUf()
{
const fvMesh& mesh = this->fluid().mesh();
if (Uf_.valid())
{
Uf_() = fvc::interpolate(U_);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
Uf_() +=
n*(
this->fluid().MRF().absolute(fvc::absolute(phi_, U_))
/mesh.magSf()
- (n & Uf_())
);
}
}
template<class BasePhaseModel>
bool Foam::MovingPhaseModel<BasePhaseModel>::stationary() const
{
return false;
}
template<class BasePhaseModel>
Foam::tmp<Foam::fvVectorMatrix>
Foam::MovingPhaseModel<BasePhaseModel>::UEqn()
{
const volScalarField& alpha = *this;
const volScalarField& rho = this->thermo().rho();
return
(
fvm::ddt(alpha, rho, U_)
+ fvm::div(alphaRhoPhi_, U_)
+ fvm::SuSp(-this->continuityError(), U_)
+ this->fluid().MRF().DDt(alpha*rho, U_)
+ momentumTransport_->divDevTau(U_)
);
}
template<class BasePhaseModel>
Foam::tmp<Foam::fvVectorMatrix>
Foam::MovingPhaseModel<BasePhaseModel>::UfEqn()
{
// As the "normal" U-eqn but without the ddt terms
const volScalarField& alpha = *this;
const volScalarField& rho = this->thermo().rho();
return
(
fvm::div(alphaRhoPhi_, U_)
+ fvm::SuSp(fvc::ddt(*this, rho) - this->continuityError(), U_)
+ this->fluid().MRF().DDt(alpha*rho, U_)
+ momentumTransport_->divDevTau(U_)
);
}
template<class BasePhaseModel>
Foam::tmp<Foam::volVectorField>
Foam::MovingPhaseModel<BasePhaseModel>::U() const
{
return U_;
}
template<class BasePhaseModel>
Foam::volVectorField&
Foam::MovingPhaseModel<BasePhaseModel>::URef()
{
return U_;
}
template<class BasePhaseModel>
Foam::tmp<Foam::surfaceScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::phi() const
{
return phi_;
}
template<class BasePhaseModel>
Foam::surfaceScalarField&
Foam::MovingPhaseModel<BasePhaseModel>::phiRef()
{
return phi_;
}
template<class BasePhaseModel>
const Foam::autoPtr<Foam::surfaceVectorField>&
Foam::MovingPhaseModel<BasePhaseModel>::Uf() const
{
return Uf_;
}
template<class BasePhaseModel>
Foam::surfaceVectorField&
Foam::MovingPhaseModel<BasePhaseModel>::UfRef()
{
if (Uf_.valid())
{
return Uf_();
}
else
{
FatalErrorInFunction
<< "Uf has not been allocated."
<< exit(FatalError);
return const_cast<surfaceVectorField&>(surfaceVectorField::null());
}
}
template<class BasePhaseModel>
Foam::tmp<Foam::surfaceScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::alphaPhi() const
{
return alphaPhi_;
}
template<class BasePhaseModel>
Foam::surfaceScalarField&
Foam::MovingPhaseModel<BasePhaseModel>::alphaPhiRef()
{
return alphaPhi_;
}
template<class BasePhaseModel>
Foam::tmp<Foam::surfaceScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::alphaRhoPhi() const
{
return alphaRhoPhi_;
}
template<class BasePhaseModel>
Foam::surfaceScalarField&
Foam::MovingPhaseModel<BasePhaseModel>::alphaRhoPhiRef()
{
return alphaRhoPhi_;
}
template<class BasePhaseModel>
Foam::tmp<Foam::volVectorField>
Foam::MovingPhaseModel<BasePhaseModel>::DUDt() const
{
if (!DUDt_.valid())
{
const tmp<surfaceScalarField> taphi(fvc::absolute(phi_, U_));
const surfaceScalarField& aphi(taphi());
DUDt_ =
new volVectorField
(
IOobject::groupName("DUDt", this->name()),
fvc::ddt(U_) + fvc::div(aphi, U_) - fvc::div(aphi)*U_
);
}
return tmp<volVectorField>(DUDt_());
}
template<class BasePhaseModel>
Foam::tmp<Foam::surfaceScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::DUDtf() const
{
if (!DUDtf_.valid())
{
DUDtf_ =
new surfaceScalarField
(
IOobject::groupName("DUDtf", this->name()),
byDt(phi_ - phi_.oldTime())
);
}
return tmp<surfaceScalarField>(DUDtf_());
}
template<class BasePhaseModel>
Foam::tmp<Foam::volScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::continuityError() const
{
return continuityError_;
}
template<class BasePhaseModel>
Foam::tmp<Foam::volScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::K() const
{
if (!K_.valid())
{
K_ =
new volScalarField
(
IOobject::groupName("K", this->name()),
0.5*magSqr(this->U())
);
}
return tmp<volScalarField>(K_());
}
template<class BasePhaseModel>
const Foam::autoPtr<Foam::volScalarField>&
Foam::MovingPhaseModel<BasePhaseModel>::divU() const
{
return divU_;
}
template<class BasePhaseModel>
void Foam::MovingPhaseModel<BasePhaseModel>::divU(tmp<volScalarField> divU)
{
if (!divU_.valid())
{
divU_ = divU.ptr();
divU_().rename(IOobject::groupName("divU", this->name()));
divU_().checkIn();
}
else
{
divU_() = divU;
}
}
template<class BasePhaseModel>
Foam::tmp<Foam::volScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::k() const
{
return momentumTransport_->k();
}
template<class BasePhaseModel>
Foam::tmp<Foam::volScalarField>
Foam::MovingPhaseModel<BasePhaseModel>::pPrime() const
{
return momentumTransport_->pPrime();
}
template<class BasePhaseModel>
Foam::tmp<Foam::scalarField>
Foam::MovingPhaseModel<BasePhaseModel>::kappaEff(const label patchi) const
{
return thermophysicalTransport_->kappaEff(patchi);
}
template<class BasePhaseModel>
Foam::tmp<Foam::fvScalarMatrix>
Foam::MovingPhaseModel<BasePhaseModel>::divq(volScalarField& he) const
{
return thermophysicalTransport_->divq(he);
}
template<class BasePhaseModel>
Foam::tmp<Foam::fvScalarMatrix>
Foam::MovingPhaseModel<BasePhaseModel>::divj(volScalarField& Yi) const
{
return thermophysicalTransport_->divj(Yi);
}
// ************************************************************************* //