These models represent a phase nucleating directly out of a
multi-component mixture into isolated particles (i.e., homogeneous),
rather than onto an existing surface or impurity (heterogeneous).
The homogeneousCondensation model can represent the initial stages of a
gas condensing into a liquid. Example usage, in constant/fvModels:
homogeneousCondensation
{
type homogeneousCondensation;
libs ("libmultiphaseEulerFvModels.so");
// Phases between which the transfer occurs. The first phase is the
// gas, and the second is the condensed liquid.
phases (gas water);
// The specie that is condensing
specie H2O;
// Linearise the latent heat contribution into the energy equation?
energySemiImplicit no;
// Saturation curve for the specie in the gaseous phase
pSat ArdenBuck;
}
The homogeneousLiquidPhaseSeparation model can represent the initial
stages of a liquid solution precipitating out a solid or separating into
two immiscible liquid phases: Example usage, in constant/fvModels:
homogeneousLiquidPhaseSeparation
{
type homogeneousLiquidPhaseSeparation;
libs ("libmultiphaseEulerFvModels.so");
// Phases between which the transfer occurs. The first phase is the
// solution, and the second is the precipitate.
phases (liquid sugar);
// The specie that is condensing
specie C2H12O6;
// Linearise the latent heat contribution into the energy equation?
energySemiImplicit no;
// Solubility given in mass of solute per mass of solvent
solubility constant 0.9;
}
If population balance is being used, then both of these models require a
source term to be applied to the size-group equations. This is achieved
by means of a new nucleationSizeGroup field source. Example usage, in
0/fDefault.water:
sources
{
homogeneousCondensation
{
type nucleationSizeGroup;
libs ("libmultiphaseEulerFvModels.so");
}
}