Files
OpenFOAM-12/applications/modules/multiphaseEuler/populationBalance/binaryBreakupModels/Liao/LiaoBase.C
Will Bainbridge d5df0a96f1 populationBalance: Allocation coefficient bounds handling
An enumeration has been added to the arguments of the allocation
coefficient function, eta, to allow specification of how to allocate out
of bounds of the population balance size-groups. There are two options:

- "Clamp" will create an out-of-bounds allocation coefficient of exactly
  one. This partitions unity across all size-space.

- "Extrapolate" will create an out-of-bounds allocation coefficient in
  proportion to the ratio between the given size and the nearest
  size-group size. This does not partition unity outside the range of
  the size-groups.

The previous operation is equivalent to "Extrapolate".

It is not yet clear which method is preferable and under what
circumstances. More testing is required. The enumeration has been
created to facilitate this testing.
2023-12-15 10:05:43 +00:00

223 lines
6.5 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2021-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "LiaoBase.H"
#include "fvcGrad.H"
#include "phaseCompressibleMomentumTransportModel.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::diameterModels::LiaoBase::LiaoBase
(
const populationBalanceModel& popBal,
const dictionary& dict
)
:
populationBalance_(popBal),
kolmogorovLengthScale_
(
IOobject
(
"kolmogorovLengthScale",
populationBalance_.time().name(),
populationBalance_.mesh()
),
populationBalance_.mesh(),
dimensionedScalar
(
"kolmogorovLengthScale",
dimLength,
Zero
)
),
shearStrainRate_
(
IOobject
(
"shearStrainRate",
populationBalance_.time().name(),
populationBalance_.mesh()
),
populationBalance_.mesh(),
dimensionedScalar
(
"shearStrainRate",
dimVelocity/dimLength,
Zero
)
),
eddyStrainRate_
(
IOobject
(
"eddyStrainRate",
populationBalance_.time().name(),
populationBalance_.mesh()
),
populationBalance_.mesh(),
dimensionedScalar
(
"eddyStrainRate",
dimVelocity/dimLength,
Zero
)
)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::diameterModels::LiaoBase::precompute()
{
kolmogorovLengthScale_ =
pow025
(
pow3(populationBalance_.continuousPhase().fluidThermo().nu())
/populationBalance_.continuousTurbulence().epsilon()
);
shearStrainRate_ =
sqrt(2.0)
*mag(symm(fvc::grad(populationBalance_.continuousPhase().U())));
eddyStrainRate_ =
sqrt
(
populationBalance_.continuousPhase().rho()
*populationBalance_.continuousTurbulence().epsilon()
/populationBalance_.continuousPhase().fluidThermo().mu()
);
if (uTerminal_.empty())
{
const fvMesh& mesh = populationBalance_.mesh();
const uniformDimensionedVectorField& g =
mesh.lookupObject<uniformDimensionedVectorField>("g");
const dimensionedScalar nuc
(
"nuc",
dimViscosity,
gAverage(populationBalance_.continuousPhase().fluidThermo().nu()())
);
const dimensionedScalar rhoc
(
"rhoc",
dimDensity,
gAverage(populationBalance_.continuousPhase().rho())
);
const dimensionedScalar rhod
(
"rhod",
dimDensity,
gAverage(populationBalance_.sizeGroups()[1].phase().rho())
);
const dimensionedScalar sigma
(
"sigma",
dimForce/dimLength,
gAverage
(
populationBalance_.sigmaWithContinuousPhase
(
populationBalance_.sizeGroups()[1].phase()
)()
)
);
for(int m = 0; m < populationBalance_.sizeGroups().size(); m++)
{
const sizeGroup& f = populationBalance_.sizeGroups()[m];
dimensionedScalar uTerminal("uTerminal", dimVelocity, 0.2);
dimensionedScalar Cd("Cd", dimless, 0.44);
dimensionedScalar CdEllipse("CdEllipse", dimless, 1);
dimensionedScalar Re(uTerminal*f.dSph()/nuc);
const dimensionedScalar Eo
(
mag(g)*mag(rhoc - rhod)*sqr(f.dSph())/sigma
);
dimensionedScalar F("F", dimForce/dimArea, 1);
dimensionedScalar dF("dF", dimForce/dimArea/dimVelocity, 1);
const dimensionedScalar uTerminalX("uTerminalX", dimVelocity, 1e-5);
dimensionedScalar ReX("ReX", dimless, Re.value());
dimensionedScalar CdX("CdX", dimless, Cd.value());
dimensionedScalar dCd("dCd", Cd.dimensions()/dimVelocity, Zero);
int n = 0;
while(mag(F.value()) >= 1.0e-05 && n++ <= 20)
{
Re = uTerminal*f.dSph()/nuc;
Cd =
pos0(1000 - Re)*24/Re*(1 + 0.1*pow(Re, 0.75))
+ neg(1000 - Re)*0.44;
CdEllipse = 0.6666*sqrt(Eo);
Cd =
pos0(CdEllipse - Cd)
*min(CdEllipse.value(), 8.0/3.0)
+ neg(CdEllipse - Cd)*Cd;
F =
4.0/3.0*(rhoc - rhod)*mag(g)*f.dSph()
- rhoc*Cd*sqr(uTerminal);
ReX = (uTerminal + uTerminalX)*f.dSph()/nuc;
CdX =
pos0(1000 - ReX)
*24/ReX*(1 + 0.1*pow(ReX, 0.75))
+ neg(1000 - ReX)*0.44;
CdX =
pos0(CdEllipse - CdX)
*min(CdEllipse.value(), 2.66667)
+ neg(CdEllipse - CdX)*CdX;
dCd = (CdX - Cd)/uTerminalX;
dF = -(2*rhoc*uTerminal*Cd + rhoc*sqr(uTerminal)*dCd);
uTerminal -= F/dF;
}
uTerminal_.append(new dimensionedScalar("uTerminal", uTerminal));
Cd_.append(new dimensionedScalar("Cd", Cd));
}
}
}
// ************************************************************************* //