Files
OpenFOAM-12/applications/solvers/modules/compressibleVoF/alphaPredictor.C
Henry Weller ed7e703040 Time::timeName(): no longer needed, calls replaced by name()
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly.  The timeName()
function implementation is maintained for backward-compatibility.
2022-11-30 15:53:51 +00:00

111 lines
3.2 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "compressibleVoF.H"
#include "interfaceCompression.H"
#include "CMULES.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::solvers::compressibleVoF::alphaPredictor()
{
#include "alphaControls.H"
volScalarField& alpha2(mixture.alpha2());
const volScalarField& rho1 = mixture.thermo1().rho();
const volScalarField& rho2 = mixture.thermo2().rho();
tmp<surfaceScalarField> talphaPhi1(alphaPhi1);
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
talphaPhi1 = new surfaceScalarField
(
IOobject
(
"alphaPhi1",
runTime.name(),
mesh
),
mesh,
dimensionedScalar(alphaPhi1.dimensions(), 0)
);
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.name(),
mesh
),
mesh,
dimensionedScalar(rhoPhi.dimensions(), 0)
);
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqn.H"
talphaPhi1.ref() += (runTime.deltaT()/totalDeltaT)*alphaPhi1;
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
alphaPhi1 = talphaPhi1();
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqn.H"
}
contErr =
(
fvc::ddt(rho)()() + fvc::div(rhoPhi)()()
- (fvModels().source(alpha1, rho1)&rho1)()
- (fvModels().source(alpha2, rho2)&rho2)()
);
}
// ************************************************************************* //