The timeName() function simply returns the dimensionedScalar::name() which holds the user-time name of the current time and now that timeName() is no longer virtual the dimensionedScalar::name() can be called directly. The timeName() function implementation is maintained for backward-compatibility.
603 lines
19 KiB
C++
603 lines
19 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2013-2022 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "phaseSystem.H"
|
|
|
|
#include "MULES.H"
|
|
#include "subCycle.H"
|
|
|
|
#include "fvcDdt.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcMeshPhi.H"
|
|
#include "fvcSup.H"
|
|
|
|
#include "fvmDdt.H"
|
|
#include "fvmLaplacian.H"
|
|
#include "fvmSup.H"
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
void Foam::phaseSystem::solve
|
|
(
|
|
const PtrList<volScalarField>& rAUs,
|
|
const PtrList<surfaceScalarField>& rAUfs
|
|
)
|
|
{
|
|
const dictionary& alphaControls = mesh_.solution().solverDict("alpha");
|
|
|
|
const label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
|
|
const label nAlphaCorr(alphaControls.lookup<label>("nAlphaCorr"));
|
|
|
|
const bool LTS = fv::localEulerDdt::enabled(mesh_);
|
|
|
|
// Temporary switch for testing and comparing the standard split
|
|
// and the new un-split phase flux discretisation
|
|
const bool splitPhaseFlux
|
|
(
|
|
alphaControls.lookupOrDefault<Switch>("splitPhaseFlux", false)
|
|
);
|
|
|
|
// Temporary switch for testing and comparing the standard mean flux
|
|
// and the new phase flux reference for the phase flux correction
|
|
const bool meanFluxReference
|
|
(
|
|
alphaControls.lookupOrDefault<Switch>("meanFluxReference", false)
|
|
);
|
|
|
|
// Optional reference phase which is not solved for
|
|
// but obtained from the sum of the other phases
|
|
phaseModel* referencePhasePtr = nullptr;
|
|
|
|
// The phases which are solved
|
|
// i.e. the moving phases less the optional reference phase
|
|
phaseModelPartialList solvePhases;
|
|
|
|
if (referencePhaseName_ != word::null)
|
|
{
|
|
referencePhasePtr = &phases()[referencePhaseName_];
|
|
|
|
solvePhases.setSize(movingPhases().size() - 1);
|
|
label solvePhasesi = 0;
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
if (&movingPhases()[movingPhasei] != referencePhasePtr)
|
|
{
|
|
solvePhases.set(solvePhasesi++, &movingPhases()[movingPhasei]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
solvePhases = movingPhases();
|
|
}
|
|
|
|
forAll(phases(), phasei)
|
|
{
|
|
phases()[phasei].correctBoundaryConditions();
|
|
}
|
|
|
|
PtrList<surfaceScalarField> alphaPhiDbyA0s(phases().size());
|
|
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
|
{
|
|
const PtrList<surfaceScalarField> DByAfs(this->DByAfs(rAUs, rAUfs));
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
const phaseModel& phase = solvePhases[solvePhasei];
|
|
const volScalarField& alpha = phase;
|
|
|
|
alphaPhiDbyA0s.set
|
|
(
|
|
phase.index(),
|
|
DByAfs[phase.index()]
|
|
*fvc::snGrad(alpha, "bounded")*mesh_.magSf()
|
|
);
|
|
}
|
|
}
|
|
|
|
// Calculate the void fraction
|
|
volScalarField alphaVoid
|
|
(
|
|
IOobject
|
|
(
|
|
"alphaVoid",
|
|
mesh_.time().name(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, 1)
|
|
);
|
|
forAll(stationaryPhases(), stationaryPhasei)
|
|
{
|
|
alphaVoid -= stationaryPhases()[stationaryPhasei];
|
|
}
|
|
|
|
// Calculate the effective flux of the moving phases
|
|
tmp<surfaceScalarField> tphiMoving(phi_);
|
|
if (stationaryPhases().size())
|
|
{
|
|
tphiMoving = phi_/upwind<scalar>(mesh_, phi_).interpolate(alphaVoid);
|
|
}
|
|
const surfaceScalarField& phiMoving = tphiMoving();
|
|
|
|
bool dilatation = false;
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
if (movingPhases()[movingPhasei].divU().valid())
|
|
{
|
|
dilatation = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int acorr=0; acorr<nAlphaCorr; acorr++)
|
|
{
|
|
PtrList<volScalarField::Internal> Sps(phases().size());
|
|
PtrList<volScalarField::Internal> Sus(phases().size());
|
|
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
const phaseModel& phase = movingPhases()[movingPhasei];
|
|
const volScalarField& alpha = phase;
|
|
const label phasei = phase.index();
|
|
|
|
Sps.set
|
|
(
|
|
phasei,
|
|
new volScalarField::Internal
|
|
(
|
|
IOobject
|
|
(
|
|
"Sp",
|
|
mesh_.time().name(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless/dimTime, 0)
|
|
)
|
|
);
|
|
|
|
Sus.set
|
|
(
|
|
phasei,
|
|
new volScalarField::Internal
|
|
(
|
|
"Su",
|
|
min(alpha.v(), scalar(1))
|
|
*fvc::div(fvc::absolute(phi_, phase.U()))->v()
|
|
)
|
|
);
|
|
|
|
if (dilatation)
|
|
{
|
|
// Construct the dilatation rate source term
|
|
volScalarField::Internal dgdt
|
|
(
|
|
volScalarField::Internal::New
|
|
(
|
|
"dgdt",
|
|
mesh_,
|
|
dimensionedScalar(dimless/dimTime, 0)
|
|
)
|
|
);
|
|
|
|
forAll(phases(), phasej)
|
|
{
|
|
const phaseModel& phase2 = phases()[phasej];
|
|
const volScalarField& alpha2 = phase2;
|
|
|
|
if (&phase2 != &phase)
|
|
{
|
|
if (phase.divU().valid())
|
|
{
|
|
dgdt += alpha2()*phase.divU()()();
|
|
}
|
|
|
|
if (phase2.divU().valid())
|
|
{
|
|
dgdt -= alpha()*phase2.divU()()();
|
|
}
|
|
}
|
|
}
|
|
|
|
volScalarField::Internal& Sp = Sps[phasei];
|
|
volScalarField::Internal& Su = Sus[phasei];
|
|
|
|
forAll(dgdt, celli)
|
|
{
|
|
if (dgdt[celli] > 0)
|
|
{
|
|
Sp[celli] -= dgdt[celli]/max(1 - alpha[celli], 1e-4);
|
|
Su[celli] += dgdt[celli]/max(1 - alpha[celli], 1e-4);
|
|
}
|
|
else if (dgdt[celli] < 0)
|
|
{
|
|
Sp[celli] += dgdt[celli]/max(alpha[celli], 1e-4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tmp<volScalarField> trSubDeltaT;
|
|
|
|
if (LTS && nAlphaSubCycles > 1)
|
|
{
|
|
trSubDeltaT =
|
|
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
|
|
}
|
|
|
|
List<volScalarField*> alphaPtrs(phases().size());
|
|
forAll(phases(), phasei)
|
|
{
|
|
alphaPtrs[phasei] = &phases()[phasei];
|
|
}
|
|
|
|
for
|
|
(
|
|
subCycle<volScalarField, subCycleFields> alphaSubCycle
|
|
(
|
|
alphaPtrs,
|
|
nAlphaSubCycles
|
|
);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
// Create correction fluxes
|
|
PtrList<surfaceScalarField> alphaPhis(phases().size());
|
|
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
const phaseModel& phase = movingPhases()[movingPhasei];
|
|
const volScalarField& alpha = phase;
|
|
|
|
alphaPhis.set
|
|
(
|
|
phase.index(),
|
|
new surfaceScalarField
|
|
(
|
|
IOobject::groupName("alphaPhiCorr", phase.name()),
|
|
fvc::flux
|
|
(
|
|
splitPhaseFlux ? phi_ : phase.phi()(),
|
|
alpha,
|
|
"div(phi," + alpha.name() + ')'
|
|
)
|
|
)
|
|
);
|
|
|
|
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
|
|
|
|
if (splitPhaseFlux)
|
|
{
|
|
forAll(phases(), phasei)
|
|
{
|
|
const phaseModel& phase2 = phases()[phasei];
|
|
const volScalarField& alpha2 = phase2;
|
|
|
|
if (&phase2 == &phase) continue;
|
|
|
|
surfaceScalarField phir(phase.phi() - phase2.phi());
|
|
|
|
cAlphaTable::const_iterator cAlpha
|
|
(
|
|
cAlphas_.find(phaseInterface(phase, phase2))
|
|
);
|
|
|
|
if (cAlpha != cAlphas_.end())
|
|
{
|
|
surfaceScalarField phic
|
|
(
|
|
(mag(phi_) + mag(phir))/mesh_.magSf()
|
|
);
|
|
|
|
phir +=
|
|
min(cAlpha()*phic, max(phic))
|
|
*nHatf(alpha, alpha2);
|
|
}
|
|
|
|
const word phirScheme
|
|
(
|
|
"div(phir,"
|
|
+ alpha2.name() + ',' + alpha.name()
|
|
+ ')'
|
|
);
|
|
|
|
alphaPhi += fvc::flux
|
|
(
|
|
-fvc::flux(-phir, alpha2, phirScheme),
|
|
alpha,
|
|
phirScheme
|
|
);
|
|
}
|
|
}
|
|
else if (!cAlphas_.empty())
|
|
{
|
|
forAll(phases(), phasei)
|
|
{
|
|
const phaseModel& phase2 = phases()[phasei];
|
|
const volScalarField& alpha2 = phase2;
|
|
|
|
if (&phase2 == &phase) continue;
|
|
|
|
cAlphaTable::const_iterator cAlpha
|
|
(
|
|
cAlphas_.find(phaseInterface(phase, phase2))
|
|
);
|
|
|
|
if (cAlpha != cAlphas_.end())
|
|
{
|
|
const surfaceScalarField phir
|
|
(
|
|
phase.phi() - phase2.phi()
|
|
);
|
|
|
|
const surfaceScalarField phic
|
|
(
|
|
(mag(phi_) + mag(phir))/mesh_.magSf()
|
|
);
|
|
|
|
const surfaceScalarField phirc
|
|
(
|
|
min(cAlpha()*phic, max(phic))
|
|
*nHatf(alpha, alpha2)
|
|
);
|
|
|
|
const word phirScheme
|
|
(
|
|
"div(phir,"
|
|
+ alpha2.name() + ',' + alpha.name()
|
|
+ ')'
|
|
);
|
|
|
|
alphaPhi += fvc::flux
|
|
(
|
|
-fvc::flux(-phirc, alpha2, phirScheme),
|
|
alpha,
|
|
phirScheme
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (alphaPhiDbyA0s.set(phase.index()))
|
|
{
|
|
alphaPhi +=
|
|
fvc::interpolate(max(alpha, scalar(0)))
|
|
*fvc::interpolate(max(1 - alpha, scalar(0)))
|
|
*alphaPhiDbyA0s[phase.index()];
|
|
}
|
|
|
|
phase.correctInflowOutflow(alphaPhi);
|
|
|
|
MULES::limit
|
|
(
|
|
geometricOneField(),
|
|
alpha,
|
|
meanFluxReference
|
|
? phiMoving // Guarantees boundedness but less accurate
|
|
: phase.phi()(), // Less robust but more accurate
|
|
alphaPhi,
|
|
Sps[phase.index()],
|
|
Sus[phase.index()],
|
|
min(alphaVoid.primitiveField(), phase.alphaMax())(),
|
|
zeroField(),
|
|
false
|
|
);
|
|
}
|
|
|
|
// Limit the flux corrections to ensure the phase fractions sum to 1
|
|
{
|
|
// Generate alphas for the moving phases
|
|
UPtrList<const volScalarField> alphasMoving
|
|
(
|
|
movingPhases().size()
|
|
);
|
|
|
|
UPtrList<surfaceScalarField> alphaPhisMoving
|
|
(
|
|
movingPhases().size()
|
|
);
|
|
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
const phaseModel& phase = movingPhases()[movingPhasei];
|
|
|
|
alphasMoving.set(movingPhasei, &phase);
|
|
|
|
alphaPhisMoving.set
|
|
(
|
|
movingPhasei,
|
|
&alphaPhis[phase.index()]
|
|
);
|
|
}
|
|
|
|
MULES::limitSum(alphasMoving, alphaPhisMoving, phiMoving);
|
|
}
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
volScalarField& alpha = phase;
|
|
|
|
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
|
|
phase.correctInflowOutflow(alphaPhi);
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha,
|
|
alphaPhi,
|
|
Sps[phase.index()],
|
|
Sus[phase.index()]
|
|
);
|
|
|
|
if (alphaSubCycle.index() == 1)
|
|
{
|
|
phase.alphaPhiRef() = alphaPhi;
|
|
}
|
|
else
|
|
{
|
|
phase.alphaPhiRef() += alphaPhi;
|
|
}
|
|
}
|
|
|
|
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
|
{
|
|
const PtrList<surfaceScalarField> DByAfs
|
|
(
|
|
this->DByAfs(rAUs, rAUfs)
|
|
);
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
volScalarField& alpha = phase;
|
|
|
|
const surfaceScalarField alphaDbyA
|
|
(
|
|
fvc::interpolate(max(alpha, scalar(0)))
|
|
*fvc::interpolate(max(1 - alpha, scalar(0)))
|
|
*DByAfs[phase.index()]
|
|
);
|
|
|
|
fvScalarMatrix alphaEqn
|
|
(
|
|
fvm::ddt(alpha) - fvc::ddt(alpha)
|
|
- fvm::laplacian(alphaDbyA, alpha, "bounded")
|
|
);
|
|
|
|
alphaEqn.solve();
|
|
|
|
phase.alphaPhiRef() += alphaEqn.flux();
|
|
}
|
|
}
|
|
|
|
// Report the phase fractions and the phase fraction sum
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
|
|
Info<< phase.name() << " fraction, min, max = "
|
|
<< phase.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(phase).value()
|
|
<< ' ' << max(phase).value()
|
|
<< endl;
|
|
}
|
|
|
|
if (referencePhasePtr)
|
|
{
|
|
volScalarField& referenceAlpha = *referencePhasePtr;
|
|
referenceAlpha = alphaVoid;
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
referenceAlpha -= solvePhases[solvePhasei];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
volScalarField sumAlphaMoving
|
|
(
|
|
IOobject
|
|
(
|
|
"sumAlphaMoving",
|
|
mesh_.time().name(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, 0)
|
|
);
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
sumAlphaMoving += movingPhases()[movingPhasei];
|
|
}
|
|
|
|
Info<< "Phase-sum volume fraction, min, max = "
|
|
<< (sumAlphaMoving + 1 - alphaVoid)()
|
|
.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(sumAlphaMoving + 1 - alphaVoid).value()
|
|
<< ' ' << max(sumAlphaMoving + 1 - alphaVoid).value()
|
|
<< endl;
|
|
|
|
// Correct the sum of the phase fractions to avoid drift
|
|
forAll(movingPhases(), movingPhasei)
|
|
{
|
|
movingPhases()[movingPhasei] *= alphaVoid/sumAlphaMoving;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
|
|
phase.alphaPhiRef() /= nAlphaSubCycles;
|
|
}
|
|
}
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
|
|
phase.alphaRhoPhiRef() =
|
|
fvc::interpolate(phase.rho())*phase.alphaPhi();
|
|
|
|
phase.maxMin(0, 1);
|
|
}
|
|
|
|
if (referencePhasePtr)
|
|
{
|
|
phaseModel& referencePhase = *referencePhasePtr;
|
|
|
|
referencePhase.alphaPhiRef() = phi_;
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
phaseModel& phase = solvePhases[solvePhasei];
|
|
referencePhase.alphaPhiRef() -= phase.alphaPhi();
|
|
}
|
|
|
|
referencePhase.alphaRhoPhiRef() =
|
|
fvc::interpolate(referencePhase.rho())
|
|
*referencePhase.alphaPhi();
|
|
|
|
volScalarField& referenceAlpha = referencePhase;
|
|
referenceAlpha = alphaVoid;
|
|
|
|
forAll(solvePhases, solvePhasei)
|
|
{
|
|
referenceAlpha -= solvePhases[solvePhasei];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|