Files
OpenFOAM-12/applications/solvers/multiphase/multiphaseEulerFoam/phaseSystems/phaseModel/phaseModel/phaseModel.H
Henry Weller ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00

374 lines
11 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2021 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::phaseModel
SourceFiles
phaseModel.C
\*---------------------------------------------------------------------------*/
#ifndef phaseModel_H
#define phaseModel_H
#include "dictionary.H"
#include "dimensionedScalar.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fvMatricesFwd.H"
#include "rhoThermo.H"
#include "runTimeSelectionTables.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class phaseSystem;
class diameterModel;
/*---------------------------------------------------------------------------*\
Class phaseModel Declaration
\*---------------------------------------------------------------------------*/
class phaseModel
:
public volScalarField
{
// Private Data
//- Reference to the phaseSystem to which this phase belongs
const phaseSystem& fluid_;
//- Name of phase
word name_;
//- Index of phase
label index_;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
dimensionedScalar residualAlpha_;
//- Optional maximum phase-fraction (e.g. packing limit)
scalar alphaMax_;
//- Diameter model
autoPtr<diameterModel> diameterModel_;
public:
//- Runtime type information
ClassName("phaseModel");
// Declare runtime construction
declareRunTimeSelectionTable
(
autoPtr,
phaseModel,
phaseSystem,
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
),
(fluid, phaseName, referencePhase, index)
);
// Constructors
phaseModel
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return clone
autoPtr<phaseModel> clone() const;
// Selectors
static autoPtr<phaseModel> New
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return a pointer to a new phase created on freestore
// from Istream
class iNew
{
const phaseSystem& fluid_;
const word& referencePhaseName_;
mutable label indexCounter_;
public:
iNew
(
const phaseSystem& fluid,
const word& referencePhaseName
)
:
fluid_(fluid),
referencePhaseName_(referencePhaseName),
indexCounter_(-1)
{}
autoPtr<phaseModel> operator()(Istream& is) const
{
indexCounter_++;
const word phaseName(is);
return autoPtr<phaseModel>
(
phaseModel::New
(
fluid_,
phaseName,
phaseName == referencePhaseName_,
indexCounter_
)
);
}
};
//- Destructor
virtual ~phaseModel();
// Member Functions
//- Return the name of this phase
const word& name() const;
//- Return the name of the phase for use as the keyword in PtrDictionary
const word& keyword() const;
//- Return the index of the phase
label index() const;
//- Return the system to which this phase belongs
const phaseSystem& fluid() const;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
const dimensionedScalar& residualAlpha() const;
//- Return the maximum phase-fraction (e.g. packing limit)
scalar alphaMax() const;
//- Return the Sauter-mean diameter
tmp<volScalarField> d() const;
//- Return const-reference to diameterModel of the phase
const autoPtr<diameterModel>& dPtr() const;
//- Correct the phase properties
virtual void correct();
//- Correct the continuity error
virtual void correctContinuityError(const volScalarField& source);
//- Correct the kinematics
virtual void correctKinematics();
//- Correct the thermodynamics
virtual void correctThermo();
//- Correct the reactions
virtual void correctReactions();
//- Correct the species concentrations
virtual void correctSpecies();
//- Correct the turbulence
virtual void correctTurbulence();
//- Correct the energy transport
virtual void correctEnergyTransport();
//- Correct the face velocity for moving meshes
virtual void correctUf();
//- Ensure that the flux at inflow/outflow BCs is preserved
void correctInflowOutflow(surfaceScalarField& alphaPhi) const;
//- Read phase properties dictionary
virtual bool read();
// Density variation and compressibility
//- Return true if the phase is incompressible otherwise false
virtual bool incompressible() const = 0;
//- Return true if the phase is constant density otherwise false
virtual bool isochoric() const = 0;
//- Return the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual tmp<volScalarField> divU() const = 0;
//- Set the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual void divU(tmp<volScalarField> divU) = 0;
// Thermo
//- Return the thermophysical model
virtual const rhoThermo& thermo() const = 0;
//- Access the thermophysical model
virtual rhoThermo& thermoRef() = 0;
//- Return the density field
virtual tmp<volScalarField> rho() const = 0;
//- Return whether the phase is isothermal
virtual bool isothermal() const = 0;
//- Return the enthalpy equation
virtual tmp<fvScalarMatrix> heEqn() = 0;
// Species
//- Return whether the phase is pure (i.e., not multi-component)
virtual bool pure() const = 0;
//- Return the species fraction equation
virtual tmp<fvScalarMatrix> YiEqn(volScalarField& Yi) = 0;
//- Return the species mass fractions
virtual const PtrList<volScalarField>& Y() const = 0;
//- Return a species mass fraction by name
virtual const volScalarField& Y(const word& name) const = 0;
//- Access the species mass fractions
virtual PtrList<volScalarField>& YRef() = 0;
//- Return the active species mass fractions
virtual const UPtrList<volScalarField>& YActive() const = 0;
//- Access the active species mass fractions
virtual UPtrList<volScalarField>& YActiveRef() = 0;
//- Return the fuel consumption rate matrix
virtual tmp<fvScalarMatrix> R(volScalarField& Yi) const = 0;
// Momentum
//- Return whether the phase is stationary
virtual bool stationary() const = 0;
//- Return the momentum equation
virtual tmp<fvVectorMatrix> UEqn() = 0;
//- Return the momentum equation for the face-based algorithm
virtual tmp<fvVectorMatrix> UfEqn() = 0;
//- Return the velocity
virtual tmp<volVectorField> U() const = 0;
//- Access the velocity
virtual volVectorField& URef() = 0;
//- Return the volumetric flux
virtual tmp<surfaceScalarField> phi() const = 0;
//- Access the volumetric flux
virtual surfaceScalarField& phiRef() = 0;
//- Return the face velocity
// Required for moving mesh cases
virtual tmp<surfaceVectorField> Uf() const = 0;
//- Access the face velocity
// Required for moving mesh cases
virtual surfaceVectorField& UfRef() = 0;
//- Return the volumetric flux of the phase
virtual tmp<surfaceScalarField> alphaPhi() const = 0;
//- Access the volumetric flux of the phase
virtual surfaceScalarField& alphaPhiRef() = 0;
//- Return the mass flux of the phase
virtual tmp<surfaceScalarField> alphaRhoPhi() const = 0;
//- Access the mass flux of the phase
virtual surfaceScalarField& alphaRhoPhiRef() = 0;
//- Return the substantive acceleration
virtual tmp<volVectorField> DUDt() const = 0;
//- Return the substantive acceleration on the faces
virtual tmp<surfaceScalarField> DUDtf() const = 0;
//- Return the continuity error
virtual tmp<volScalarField> continuityError() const = 0;
//- Return the phase kinetic energy
virtual tmp<volScalarField> K() const = 0;
// Transport
//- Effective thermal turbulent diffusivity for temperature
// of mixture for patch [W/m/K]
virtual tmp<scalarField> kappaEff(const label patchi) const = 0;
//- Return the turbulent kinetic energy
virtual tmp<volScalarField> k() const = 0;
//- Return the phase-pressure'
// (derivative of phase-pressure w.r.t. phase-fraction)
virtual tmp<volScalarField> pPrime() const = 0;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //