Files
OpenFOAM-12/applications/modules/multiphaseEuler/phaseSystems/TwoResistanceHeatTransferPhaseSystem/TwoResistanceHeatTransferPhaseSystem.C
Henry Weller 5e03874bbb multiphaseEuler: Updated to us the new phaseSolidThermophysicalTransportModel class
for thermophysical transport within stationary solid phases.  This provides a
consistent interface to heat transport within solids for single and now
multiphase solvers so that for example the wallHeatFlux functionObject can now
be used with multiphaseEuler, see tutorials/multiphaseEuler/boilingBed.
Also this development supports anisotropic thermal conductivity within the
stationary solid regions which was not possible previously.

The tutorials/multiphaseEuler/bed and tutorials/multiphaseEuler/boilingBed
tutorial cases have been updated for phaseSolidThermophysicalTransportModel by
changing the thermo type in physicalProperties.solid to heSolidThermo.  This
change will need to be made to all multiphaseEuler cases involving stationary
phases.
2023-10-11 14:53:09 +01:00

332 lines
9.8 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "TwoResistanceHeatTransferPhaseSystem.H"
#include "heatTransferModel.H"
#include "fvmSup.H"
#include "rhoFluidMulticomponentThermo.H"
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
template<class BasePhaseSystem>
void Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::addDmdtHefs
(
const phaseSystem::dmdtfTable& dmdtfs,
const phaseSystem::dmdtfTable& Tfs,
const latentHeatScheme scheme,
const latentHeatTransfer transfer,
phaseSystem::heatTransferTable& eqns
) const
{
HeatTransferPhaseSystem<BasePhaseSystem>::addDmdtHefsWithoutL
(
dmdtfs,
Tfs,
scheme,
eqns
);
// Loop the pairs
forAllConstIter(phaseSystem::dmdtfTable, dmdtfs, dmdtfIter)
{
const phaseInterface interface(*this, dmdtfIter.key());
const volScalarField& dmdtf = *dmdtfIter();
const volScalarField& Tf = *Tfs[interface];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoThermo& thermo1 = phase1.thermo();
const rhoThermo& thermo2 = phase2.thermo();
// Transfer coefficients
const sidedBlendedHeatTransferModel& heatTransferModel =
heatTransferModels_[interface];
const volScalarField H1(heatTransferModel.modelInThe(phase1).K());
const volScalarField H2(heatTransferModel.modelInThe(phase2).K());
const volScalarField H1Fac(H1/(H1 + H2));
const volScalarField HEff(H1Fac*H2);
// Latent heat contribution
switch (transfer)
{
case latentHeatTransfer::heat:
{
*eqns[phase1.name()] +=
- HEff*(thermo2.T() - thermo1.T()) + H1*(Tf - thermo1.T());
*eqns[phase2.name()] +=
- HEff*(thermo1.T() - thermo2.T()) + H2*(Tf - thermo2.T());
break;
}
case latentHeatTransfer::mass:
{
const volScalarField L(this->L(interface, dmdtf, Tf, scheme));
*eqns[phase1.name()] += H1Fac*dmdtf*L;
*eqns[phase2.name()] += (1 - H1Fac)*dmdtf*L;
break;
}
}
}
}
template<class BasePhaseSystem>
void Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::addDmidtHefs
(
const phaseSystem::dmidtfTable& dmidtfs,
const phaseSystem::dmdtfTable& Tfs,
const latentHeatScheme scheme,
const latentHeatTransfer transfer,
phaseSystem::heatTransferTable& eqns
) const
{
HeatTransferPhaseSystem<BasePhaseSystem>::addDmidtHefsWithoutL
(
dmidtfs,
Tfs,
scheme,
eqns
);
// Loop the pairs
forAllConstIter(phaseSystem::dmidtfTable, dmidtfs, dmidtfIter)
{
const phaseInterface interface(*this, dmidtfIter.key());
const volScalarField& Tf = *Tfs[interface];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoThermo& thermo1 = phase1.thermo();
const rhoThermo& thermo2 = phase2.thermo();
// Transfer coefficients
const sidedBlendedHeatTransferModel& heatTransferModel =
heatTransferModels_[interface];
const volScalarField H1(heatTransferModel.modelInThe(phase1).K());
const volScalarField H2(heatTransferModel.modelInThe(phase2).K());
const volScalarField H1Fac(H1/(H1 + H2));
const volScalarField HEff(H1Fac*H2);
// Loop the species
forAllConstIter(HashPtrTable<volScalarField>, *dmidtfIter(), dmidtfJter)
{
const word& specie = dmidtfJter.key();
const volScalarField& dmidtf = *dmidtfJter();
// Latent heat contribution
switch (transfer)
{
case latentHeatTransfer::heat:
{
// Do nothing. This term is handled outside the specie loop.
break;
}
case latentHeatTransfer::mass:
{
const volScalarField Li
(
this->Li(interface, specie, dmidtf, Tf, scheme)
);
*eqns[phase1.name()] += H1Fac*dmidtf*Li;
*eqns[phase2.name()] += (1 - H1Fac)*dmidtf*Li;
break;
}
}
}
// Latent heat contribution
switch (transfer)
{
case latentHeatTransfer::heat:
{
*eqns[phase1.name()] +=
- HEff*(thermo2.T() - thermo1.T()) + H1*(Tf - thermo1.T());
*eqns[phase2.name()] +=
- HEff*(thermo1.T() - thermo2.T()) + H2*(Tf - thermo2.T());
break;
}
case latentHeatTransfer::mass:
{
// Do nothing. This term is handled inside the specie loop.
break;
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::
TwoResistanceHeatTransferPhaseSystem
(
const fvMesh& mesh
)
:
HeatTransferPhaseSystem<BasePhaseSystem>(mesh)
{
this->generateInterfacialModels(heatTransferModels_);
// Check that models have been specified on both sides of the interfaces
forAllConstIter
(
heatTransferModelTable,
heatTransferModels_,
heatTransferModelIter
)
{
const phaseInterface& interface = heatTransferModelIter()->interface();
forAllConstIter(phaseInterface, interface, iter)
{
if (!heatTransferModelIter()->haveModelInThe(iter()))
{
FatalErrorInFunction
<< "A heat transfer model for the " << iter().name()
<< " side of the " << interface.name()
<< " interface is not specified"
<< exit(FatalError);
}
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::
~TwoResistanceHeatTransferPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::autoPtr<Foam::phaseSystem::heatTransferTable>
Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::
heatTransfer() const
{
autoPtr<phaseSystem::heatTransferTable> eqnsPtr
(
new phaseSystem::heatTransferTable()
);
phaseSystem::heatTransferTable& eqns = eqnsPtr();
forAll(this->phaseModels_, phasei)
{
const phaseModel& phase = this->phaseModels_[phasei];
eqns.insert
(
phase.name(),
new fvScalarMatrix(phase.thermo().he(), dimEnergy/dimTime)
);
}
forAllConstIter
(
heatTransferModelTable,
heatTransferModels_,
heatTransferModelIter
)
{
const sidedBlendedHeatTransferModel& model = heatTransferModelIter()();
const phaseModel& phase1 = model.interface().phase1();
const phaseModel& phase2 = model.interface().phase2();
const volScalarField& he1 = phase1.thermo().he();
const volScalarField& he2 = phase2.thermo().he();
const volScalarField Cpv1(phase1.thermo().Cpv());
const volScalarField Cpv2(phase2.thermo().Cpv());
const volScalarField H1(model.modelInThe(phase1).K());
const volScalarField H2(model.modelInThe(phase2).K());
const volScalarField HEff(H1*H2/(H1 + H2));
*eqns[phase1.name()] +=
HEff*(phase2.thermo().T() - phase1.thermo().T())
+ H1/Cpv1*he1 - fvm::Sp(H1/Cpv1, he1);
*eqns[phase2.name()] +=
HEff*(phase1.thermo().T() - phase2.thermo().T())
+ H2/Cpv2*he2 - fvm::Sp(H2/Cpv2, he2);
}
return eqnsPtr;
}
template<class BasePhaseSystem>
void Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::
predictThermophysicalTransport()
{
BasePhaseSystem::predictThermophysicalTransport();
correctInterfaceThermo();
}
template<class BasePhaseSystem>
void Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::
correctThermophysicalTransport()
{
BasePhaseSystem::correctThermophysicalTransport();
}
template<class BasePhaseSystem>
bool Foam::TwoResistanceHeatTransferPhaseSystem<BasePhaseSystem>::read()
{
if (BasePhaseSystem::read())
{
bool readOK = true;
// Models ...
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //