Files
OpenFOAM-12/applications/utilities/postProcessing/noise/noise.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

190 lines
5.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
noise
Description
Utility to perform noise analysis of pressure data using the noiseFFT
library.
Control settings are read from the $FOAM_CASE/system/noiseDict dictionary,
or user-specified dictionary using the -dict option. Pressure data is
read using a CSV reader:
Usage
\verbatim
pRef 101325;
N 65536;
nw 100;
f1 25;
fU 10000;
graphFormat raw;
pressureData
{
fileName "pressureData"
nHeaderLine 1; // number of header lines
refColumn 0; // reference column index
componentColumns (1); // component column indices
separator " "; // optional (defaults to ",")
mergeSeparators no; // merge multiple separators
outOfBounds clamp; // optional out-of-bounds handling
interpolationScheme linear; // optional interpolation scheme
}
\endverbatim
where
\table
Property | Description | Required | Default value
pRef | Reference pressure | no | 0
N | Number of samples in sampling window | no | 65536
nw | Number of sampling windows | no | 100
fl | Lower frequency band | no | 25
fU | Upper frequency band | no | 10000
graphFormat | Output graph format | no | raw
\endtable
Current graph outputs include:
- FFT of the pressure data
- narrow-band PFL (pressure-fluctuation level) spectrum
- one-third-octave-band PFL spectrum
- one-third-octave-band pressure spectrum
See also
CSV.H
noiseFFT.H
\*---------------------------------------------------------------------------*/
#include "noiseFFT.H"
#include "argList.H"
#include "Time.H"
#include "CSV.H"
#include "IOdictionary.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Foam::scalar checkUniformTimeStep(const scalarField& t)
{
// check that a uniform time step has been applied
scalar deltaT = -1.0;
if (t.size() > 1)
{
for (label i = 1; i < t.size(); i++)
{
scalar dT = t[i] - t[i-1];
if (deltaT < 0)
{
deltaT = dT;
}
if (mag(deltaT - dT) > small)
{
FatalErrorInFunction
<< "Unable to process data with a variable time step"
<< exit(FatalError);
}
}
}
else
{
FatalErrorInFunction
<< "Unable to create FFT with a single value"
<< exit(FatalError);
}
return deltaT;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::noParallel();
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createFields.H"
Info<< "Reading data file" << endl;
FieldFunction1<Function1Types::CSV<scalar>> pData
(
"pressure",
dict.subDict("pressureData")
);
// time history data
const scalarField t(pData.x());
// pressure data
const scalarField p(pData.y());
if (t.size() < N)
{
FatalErrorInFunction
<< "Block size N = " << N
<< " is larger than number of data = " << t.size()
<< exit(FatalError);
}
Info<< " read " << t.size() << " values" << nl << endl;
Info<< "Creating noise FFT" << endl;
noiseFFT nfft(checkUniformTimeStep(t), p);
nfft -= pRef;
fileName baseFileName(pData.fName().lessExt());
graph Pf(nfft.RMSmeanPf(N, min(nfft.size()/N, nw)));
Info<< " Creating graph for " << Pf.title() << endl;
Pf.write(baseFileName + graph::wordify(Pf.title()), graphFormat);
graph Lf(nfft.Lf(Pf));
Info<< " Creating graph for " << Lf.title() << endl;
Lf.write(baseFileName + graph::wordify(Lf.title()), graphFormat);
graph Ldelta(nfft.Ldelta(Lf, f1, fU));
Info<< " Creating graph for " << Ldelta.title() << endl;
Ldelta.write(baseFileName + graph::wordify(Ldelta.title()), graphFormat);
graph Pdelta(nfft.Pdelta(Pf, f1, fU));
Info<< " Creating graph for " << Pdelta.title() << endl;
Pdelta.write(baseFileName + graph::wordify(Pdelta.title()), graphFormat);
Info<< nl << "End\n" << endl;
return 0;
}
// ************************************************************************* //