Files
OpenFOAM-12/applications/solvers/modules/solidDisplacement/solidDisplacement.C
Henry Weller fec6705dc9 OpenFOAM: Updated for gcc-13
gcc-13 has new code checking and warning mechanisms which are useful but not
entirely robust and produce many false positives, particularly with respect to
local references:

    warning: possibly dangling reference to a temporary

This commit resolves many of the new warning messages but the above false
warnings remain.  It is possible to switch off this warning but as it also
provides some useful checks it is currently left on.
2023-05-23 10:47:56 +01:00

282 lines
6.5 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "solidDisplacement.H"
#include "fvcGrad.H"
#include "fvcDiv.H"
#include "fvcLaplacian.H"
#include "fvmD2dt2.H"
#include "fvmLaplacian.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace solvers
{
defineTypeNameAndDebug(solidDisplacement, 0);
addToRunTimeSelectionTable(solver, solidDisplacement, fvMesh);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::solvers::solidDisplacement::readControls()
{
solid::readControls();
nCorr = pimple.dict().lookupOrDefault<int>("nCorrectors", 1);
convergenceTolerance = pimple.dict().lookupOrDefault<scalar>("D", 0);
pimple.dict().lookup("compactNormalStress") >> compactNormalStress;
accFac = pimple.dict().lookupOrDefault<scalar>("accelerationFactor", 1);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::solvers::solidDisplacement::solidDisplacement(fvMesh& mesh)
:
solid
(
mesh,
autoPtr<solidThermo>(new solidDisplacementThermo(mesh))
),
thermo_(refCast<solidDisplacementThermo>(solid::thermo_)),
compactNormalStress(pimple.dict().lookup("compactNormalStress")),
D_
(
IOobject
(
"D",
runTime.name(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
E(thermo_.E()),
nu(thermo_.nu()),
mu(E/(2*(1 + nu))),
lambda
(
thermo_.planeStress()
? nu*E/((1 + nu)*(1 - nu))
: nu*E/((1 + nu)*(1 - 2*nu))
),
threeK
(
thermo_.planeStress()
? E/(1 - nu)
: E/(1 - 2*nu)
),
threeKalpha("threeKalpha", threeK*thermo_.alphav()),
sigmaD
(
IOobject
(
"sigmaD",
runTime.name(),
mesh
),
mu*twoSymm(fvc::grad(D_)) + lambda*(I*tr(fvc::grad(D_)))
),
divSigmaExp
(
IOobject
(
"divSigmaExp",
runTime.name(),
mesh
),
fvc::div(sigmaD)
- (
compactNormalStress
? fvc::laplacian(2*mu + lambda, D_, "laplacian(DD,D)")
: fvc::div((2*mu + lambda)*fvc::grad(D_), "div(sigmaD)")
)
),
thermo(thermo_),
D(D_)
{
mesh.schemes().setFluxRequired(D.name());
// Read the controls
readControls();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::solvers::solidDisplacement::~solidDisplacement()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::solvers::solidDisplacement::prePredictor()
{
if (thermo.thermalStress())
{
solid::prePredictor();
}
}
void Foam::solvers::solidDisplacement::thermophysicalPredictor()
{
if (thermo.thermalStress())
{
solid::thermophysicalPredictor();
}
}
void Foam::solvers::solidDisplacement::pressureCorrector()
{
volVectorField& D(D_);
const volScalarField& rho = thermo_.rho();
int iCorr = 0;
scalar initialResidual = 0;
{
{
fvVectorMatrix DEqn
(
fvm::d2dt2(rho, D)
==
fvm::laplacian(2*mu + lambda, D, "laplacian(DD,D)")
+ divSigmaExp
+ rho*fvModels().d2dt2(D)
);
if (thermo.thermalStress())
{
DEqn += fvc::grad(threeKalpha*T);
}
fvConstraints().constrain(DEqn);
initialResidual = DEqn.solve().max().initialResidual();
// For steady-state optionally accelerate the solution
// by over-relaxing the displacement
if (mesh.schemes().steady() && accFac > 1)
{
D += (accFac - 1)*(D - D.oldTime());
}
if (!compactNormalStress)
{
divSigmaExp = fvc::div(DEqn.flux());
}
}
const volTensorField gradD(fvc::grad(D));
sigmaD = mu*twoSymm(gradD) + (lambda*I)*tr(gradD);
if (compactNormalStress)
{
divSigmaExp = fvc::div
(
sigmaD - (2*mu + lambda)*gradD,
"div(sigmaD)"
);
}
else
{
divSigmaExp += fvc::div(sigmaD);
}
} while (initialResidual > convergenceTolerance && ++iCorr < nCorr);
}
void Foam::solvers::solidDisplacement::postCorrector()
{
if (thermo.thermalStress())
{
solid::postCorrector();
}
}
void Foam::solvers::solidDisplacement::postSolve()
{
if (runTime.writeTime())
{
volSymmTensorField sigma
(
IOobject
(
"sigma",
runTime.name(),
mesh
),
sigmaD
);
if (thermo.thermalStress())
{
sigma = sigma - I*(threeKalpha*thermo.T());
}
volScalarField sigmaEq
(
IOobject
(
"sigmaEq",
runTime.name(),
mesh
),
sqrt((3.0/2.0)*magSqr(dev(sigma)))
);
Info<< "Max sigmaEq = " << max(sigmaEq).value()
<< endl;
sigma.write();
sigmaEq.write();
}
}
// ************************************************************************* //