Add the OpenFOAM source tree

This commit is contained in:
Henry
2014-12-10 22:40:10 +00:00
parent ee487c860d
commit 446e5777f0
13379 changed files with 3983377 additions and 0 deletions

View File

@ -0,0 +1,3 @@
applyBoundaryLayer.C
EXE = $(FOAM_APPBIN)/applyBoundaryLayer

View File

@ -0,0 +1,15 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/RASModel \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lincompressibleRASModels \
-lincompressibleLESModels \
-lincompressibleTransportModels \
-lgenericPatchFields \
-lmeshTools

View File

@ -0,0 +1,238 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
applyBoundaryLayer
Description
Apply a simplified boundary-layer model to the velocity and
turbulence fields based on the 1/7th power-law.
The uniform boundary-layer thickness is either provided via the -ybl option
or calculated as the average of the distance to the wall scaled with
the thickness coefficient supplied via the option -Cbl. If both options
are provided -ybl is used.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "RASModel.H"
#include "wallDist.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// turbulence constants - file-scope
static const scalar Cmu(0.09);
static const scalar kappa(0.41);
int main(int argc, char *argv[])
{
argList::addNote
(
"apply a simplified boundary-layer model to the velocity and\n"
"turbulence fields based on the 1/7th power-law."
);
argList::addOption
(
"ybl",
"scalar",
"specify the boundary-layer thickness"
);
argList::addOption
(
"Cbl",
"scalar",
"boundary-layer thickness as Cbl * mean distance to wall"
);
argList::addBoolOption
(
"writenut",
"write nut field"
);
#include "setRootCase.H"
if (!args.optionFound("ybl") && !args.optionFound("Cbl"))
{
FatalErrorIn(args.executable())
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
else if (args.optionFound("ybl") && args.optionFound("Cbl"))
{
FatalErrorIn(args.executable())
<< "Both 'ybl' and 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Modify velocity by applying a 1/7th power law boundary-layer
// u/U0 = (y/ybl)^(1/7)
// assumes U0 is the same as the current cell velocity
Info<< "Setting boundary layer velocity" << nl << endl;
scalar yblv = ybl.value();
forAll(U, cellI)
{
if (y[cellI] <= yblv)
{
mask[cellI] = 1;
U[cellI] *= ::pow(y[cellI]/yblv, (1.0/7.0));
}
}
mask.correctBoundaryConditions();
Info<< "Writing U\n" << endl;
U.write();
// Update/re-write phi
#include "createPhi.H"
phi.write();
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
if (isA<incompressible::RASModel>(turbulence()))
{
// Calculate nut - reference nut is calculated by the turbulence model
// on its construction
tmp<volScalarField> tnut = turbulence->nut();
volScalarField& nut = tnut();
volScalarField S(mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
if (args.optionFound("writenut"))
{
Info<< "Writing nut" << endl;
nut.write();
}
//--- Read and modify turbulence fields
// Turbulence k
tmp<volScalarField> tk = turbulence->k();
volScalarField& k = tk();
scalar ck0 = pow025(Cmu)*kappa;
k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));
// do not correct BC - operation may use inconsistent fields wrt these
// local manipulations
// k.correctBoundaryConditions();
Info<< "Writing k\n" << endl;
k.write();
// Turbulence epsilon
tmp<volScalarField> tepsilon = turbulence->epsilon();
volScalarField& epsilon = tepsilon();
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);
// do not correct BC - wall functions will use non-updated k from
// turbulence model
// epsilon.correctBoundaryConditions();
Info<< "Writing epsilon\n" << endl;
epsilon.write();
// Turbulence omega
IOobject omegaHeader
(
"omega",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (omegaHeader.headerOk())
{
volScalarField omega(omegaHeader, mesh);
dimensionedScalar k0("VSMALL", k.dimensions(), VSMALL);
omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);
// do not correct BC - wall functions will use non-updated k from
// turbulence model
// omega.correctBoundaryConditions();
Info<< "Writing omega\n" << endl;
omega.write();
}
// Turbulence nuTilda
IOobject nuTildaHeader
(
"nuTilda",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (nuTildaHeader.headerOk())
{
volScalarField nuTilda(nuTildaHeader, mesh);
nuTilda = nut;
// do not correct BC
// nuTilda.correctBoundaryConditions();
Info<< "Writing nuTilda\n" << endl;
nuTilda.write();
}
}
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,77 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
Info<< "Calculating wall distance field" << endl;
volScalarField y(wallDist(mesh).y());
// Set the mean boundary-layer thickness
dimensionedScalar ybl("ybl", dimLength, 0);
if (args.optionFound("ybl"))
{
// If the boundary-layer thickness is provided use it
ybl.value() = args.optionRead<scalar>("ybl");
}
else if (args.optionFound("Cbl"))
{
// Calculate boundary layer thickness as Cbl*mean distance to wall
ybl.value() = gAverage(y)*args.optionRead<scalar>("Cbl");
}
Info<< "\nCreating boundary-layer for U of thickness "
<< ybl.value() << " m" << nl << endl;
Info<< "Creating mask field" << endl;
volScalarField mask
(
IOobject
(
"mask",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0.0),
zeroGradientFvPatchScalarField::typeName
);
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
applyWallFunctionBoundaryConditions.C
EXE = $(FOAM_APPBIN)/applyWallFunctionBoundaryConditions

View File

@ -0,0 +1,13 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/lnInclude
EXE_LIBS = \
-lincompressibleRASModels \
-lfluidThermophysicalModels \
-lspecie \
-lcompressibleRASModels \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,363 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
applyWallFunctionBounaryConditions
Description
Updates OpenFOAM RAS cases to use the new (v1.6) wall function framework.
Attempts to determine whether case is compressible or incompressible, or
can be supplied with -compressible command line argument.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "fvMesh.H"
#include "Time.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "wallPolyPatch.H"
#include "incompressible/RAS/derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonWallFunction/epsilonWallFunctionFvPatchScalarField.H"
#include "incompressible/RAS/derivedFvPatchFields/wallFunctions/kqRWallFunctions/kqRWallFunction/kqRWallFunctionFvPatchField.H"
#include "incompressible/RAS/derivedFvPatchFields/wallFunctions/nutWallFunctions/nutkWallFunction/nutkWallFunctionFvPatchScalarField.H"
#include "incompressible/RAS/derivedFvPatchFields/wallFunctions/omegaWallFunctions/omegaWallFunction/omegaWallFunctionFvPatchScalarField.H"
#include "compressible/RAS/derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonWallFunction/epsilonWallFunctionFvPatchScalarField.H"
#include "compressible/RAS/derivedFvPatchFields/wallFunctions/kqRWallFunctions/kqRWallFunction/kqRWallFunctionFvPatchField.H"
#include "compressible/RAS/derivedFvPatchFields/wallFunctions/mutWallFunctions/mutkWallFunction/mutkWallFunctionFvPatchScalarField.H"
#include "compressible/RAS/derivedFvPatchFields/wallFunctions/omegaWallFunctions/omegaWallFunction/omegaWallFunctionFvPatchScalarField.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
bool caseIsCompressible(const fvMesh& mesh)
{
// Attempt flux field
IOobject phiHeader
(
"phi",
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (phiHeader.headerOk())
{
surfaceScalarField phi(phiHeader, mesh);
if (phi.dimensions() == dimDensity*dimVelocity*dimArea)
{
return true;
}
}
// Attempt density field
IOobject rhoHeader
(
"rho",
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (rhoHeader.headerOk())
{
volScalarField rho(rhoHeader, mesh);
if (rho.dimensions() == dimDensity)
{
return true;
}
}
// Attempt pressure field
IOobject pHeader
(
"p",
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (pHeader.headerOk())
{
volScalarField p(pHeader, mesh);
if (p.dimensions() == dimMass/sqr(dimTime)/dimLength)
{
return true;
}
}
// If none of the above are true, assume that the case is incompressible
return false;
}
void createVolScalarField
(
const fvMesh& mesh,
const word& fieldName,
const dimensionSet& dims
)
{
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!fieldHeader.headerOk())
{
Info<< "Creating field " << fieldName << nl << endl;
volScalarField field
(
IOobject
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dims, 0.0)
);
field.write();
}
}
void replaceBoundaryType
(
const fvMesh& mesh,
const word& fieldName,
const word& boundaryType,
const string& boundaryValue
)
{
IOobject header
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!header.headerOk())
{
return;
}
Info<< "Updating boundary types for field " << header.name() << endl;
const word oldTypeName = IOdictionary::typeName;
const_cast<word&>(IOdictionary::typeName) = word::null;
IOdictionary dict(header);
const_cast<word&>(IOdictionary::typeName) = oldTypeName;
const_cast<word&>(dict.type()) = dict.headerClassName();
// Make a backup of the old file
if (mvBak(dict.objectPath(), "old"))
{
Info<< " Backup original file to "
<< (dict.objectPath() + ".old") << endl;
}
// Loop through boundary patches and update
const polyBoundaryMesh& bMesh = mesh.boundaryMesh();
dictionary& boundaryDict = dict.subDict("boundaryField");
forAll(bMesh, patchI)
{
if (isA<wallPolyPatch>(bMesh[patchI]))
{
word patchName = bMesh[patchI].name();
dictionary& oldPatch = boundaryDict.subDict(patchName);
dictionary newPatch(dictionary::null);
newPatch.add("type", boundaryType);
newPatch.add("value", ("uniform " + boundaryValue).c_str());
oldPatch = newPatch;
}
}
Info<< " writing updated " << dict.name() << nl << endl;
dict.regIOobject::write();
}
void updateCompressibleCase(const fvMesh& mesh)
{
Info<< "Case treated as compressible" << nl << endl;
createVolScalarField
(
mesh,
"mut",
dimArea/dimTime*dimDensity
);
replaceBoundaryType
(
mesh,
"mut",
compressible::mutkWallFunctionFvPatchScalarField::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"epsilon",
compressible::epsilonWallFunctionFvPatchScalarField::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"omega",
compressible::omegaWallFunctionFvPatchScalarField::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"k",
compressible::kqRWallFunctionFvPatchField<scalar>::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"q",
compressible::kqRWallFunctionFvPatchField<scalar>::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"R",
compressible::kqRWallFunctionFvPatchField<symmTensor>::
typeName,
"(0 0 0 0 0 0)"
);
}
void updateIncompressibleCase(const fvMesh& mesh)
{
Info<< "Case treated as incompressible" << nl << endl;
createVolScalarField(mesh, "nut", dimArea/dimTime);
replaceBoundaryType
(
mesh,
"nut",
incompressible::nutkWallFunctionFvPatchScalarField::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"epsilon",
incompressible::epsilonWallFunctionFvPatchScalarField::
typeName,
"0"
);
replaceBoundaryType
(
mesh,
"omega",
incompressible::omegaWallFunctionFvPatchScalarField::
typeName,
"0"
);
replaceBoundaryType
(
mesh,
"k",
incompressible::kqRWallFunctionFvPatchField<scalar>::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"q",
incompressible::kqRWallFunctionFvPatchField<scalar>::typeName,
"0"
);
replaceBoundaryType
(
mesh,
"R",
incompressible::kqRWallFunctionFvPatchField<symmTensor>::typeName,
"(0 0 0 0 0 0)"
);
}
int main(int argc, char *argv[])
{
#include "addTimeOptions.H"
argList::addBoolOption
(
"compressible",
"force use of compressible wall functions. Default is auto-detect."
);
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
const bool compressible = args.optionFound("compressible");
Info<< "Updating turbulence fields to operate using new run time "
<< "selectable" << nl << "wall functions"
<< nl << endl;
if (compressible || caseIsCompressible(mesh))
{
updateCompressibleCase(mesh);
}
else
{
updateIncompressibleCase(mesh);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
boxTurb.C
EXE = $(FOAM_APPBIN)/boxTurb

View File

@ -0,0 +1,7 @@
EXE_INC = \
-I$(LIB_SRC)/randomProcesses/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lrandomProcesses \
-lfiniteVolume

View File

@ -0,0 +1,83 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
boxTurb
Description
Makes a box of turbulence which conforms to a given energy
spectrum and is divergence free.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "graph.H"
#include "OFstream.H"
#include "Kmesh.H"
#include "turbGen.H"
#include "calcEk.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::noParallel();
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "readBoxTurbDict.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Kmesh K(mesh);
turbGen Ugen(K, Ea, k0);
U.internalField() = Ugen.U();
U.correctBoundaryConditions();
Info<< "k("
<< runTime.timeName()
<< ") = "
<< 3.0/2.0*average(magSqr(U)).value() << endl;
U.write();
calcEk(U, K).write
(
runTime.path()/"graphs"/runTime.timeName(),
"Ek",
runTime.graphFormat()
);
Info<< "end" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,14 @@
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);

View File

@ -0,0 +1,17 @@
Info<< "Reading boxTurbDict\n" << endl;
IOdictionary boxTurbDict
(
IOobject
(
"boxTurbDict",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
scalar Ea(readScalar(boxTurbDict.lookup("Ea")));
scalar k0(readScalar(boxTurbDict.lookup("k0")));

View File

@ -0,0 +1,3 @@
changeDictionary.C
EXE = $(FOAM_APPBIN)/changeDictionary

View File

@ -0,0 +1,9 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-ldynamicMesh \
-lmeshTools

View File

@ -0,0 +1,663 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
changeDictionary
Description
Utility to change dictionary entries, e.g. can be used to change the patch
type in the field and polyMesh/boundary files.
Reads dictionaries (fields) and entries to change from a dictionary.
E.g. to make the \em movingWall a \em fixedValue for \em p but all other
\em Walls a zeroGradient boundary condition, the
\c system/changeDictionaryDict would contain the following:
\verbatim
dictionaryReplacement
{
p // field to change
{
boundaryField
{
".*Wall" // entry to change
{
type zeroGradient;
}
movingWall // entry to change
{
type fixedValue;
value uniform 123.45;
}
}
}
}
\endverbatim
Replacement entries starting with '~' will remove the entry.
Usage
- changeDictionary [OPTION]
\param -literalRE \n
Do not interpret regular expressions or patchGroups;
treat them as any other keyword.
\param -enableFunctionEntries \n
By default all dictionary preprocessing of fields is disabled
\param -disablePatchGroups \n
By default all keys are also checked for being patchGroups
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "IOobjectList.H"
#include "IOPtrList.H"
#include "volFields.H"
#include "stringListOps.H"
#include "timeSelector.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTemplateTypeNameAndDebug(IOPtrList<entry>, 0);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Extract groupPatch (= shortcut) info from boundary file info
HashTable<wordList, word> extractPatchGroups(const dictionary& boundaryDict)
{
HashTable<wordList, word> groupToPatch;
forAllConstIter(dictionary, boundaryDict, iter)
{
const word& patchName = iter().keyword();
const dictionary& patchDict = iter().dict();
wordList groups;
if (patchDict.readIfPresent("inGroups", groups))
{
forAll(groups, i)
{
HashTable<wordList, word>::iterator fndGroup = groupToPatch.find
(
groups[i]
);
if (fndGroup == groupToPatch.end())
{
groupToPatch.insert(groups[i], wordList(1, patchName));
}
else
{
fndGroup().append(patchName);
}
}
}
}
return groupToPatch;
}
bool merge
(
dictionary&,
const dictionary&,
const bool,
const HashTable<wordList, word>&
);
// Add thisEntry to dictionary thisDict.
bool addEntry
(
dictionary& thisDict,
entry& thisEntry,
const entry& mergeEntry,
const bool literalRE,
const HashTable<wordList, word>& shortcuts
)
{
bool changed = false;
// Recursively merge sub-dictionaries
// TODO: merge without copying
if (thisEntry.isDict() && mergeEntry.isDict())
{
if
(
merge
(
const_cast<dictionary&>(thisEntry.dict()),
mergeEntry.dict(),
literalRE,
shortcuts
)
)
{
changed = true;
}
}
else
{
// Should use in-place modification instead of adding
thisDict.add(mergeEntry.clone(thisDict).ptr(), true);
changed = true;
}
return changed;
}
// List of indices into thisKeys
labelList findMatches
(
const HashTable<wordList, word>& shortcuts,
const wordList& shortcutNames,
const wordList& thisKeys,
const keyType& key
)
{
labelList matches;
if (key.isPattern())
{
// Wildcard match
matches = findStrings(key, thisKeys);
}
else if (shortcuts.size())
{
// See if patchGroups expand to valid thisKeys
labelList indices = findStrings(key, shortcutNames);
forAll(indices, i)
{
const word& name = shortcutNames[indices[i]];
const wordList& keys = shortcuts[name];
forAll(keys, j)
{
label index = findIndex(thisKeys, keys[j]);
if (index != -1)
{
matches.append(index);
}
}
}
}
return matches;
}
// Dictionary merging/editing.
// literalRE:
// - true: behave like dictionary::merge, i.e. add regexps just like
// any other key.
// - false : interpret wildcard as a rule for items to be matched.
bool merge
(
dictionary& thisDict,
const dictionary& mergeDict,
const bool literalRE,
const HashTable<wordList, word>& shortcuts
)
{
const wordList shortcutNames(shortcuts.toc());
bool changed = false;
// Save current (non-wildcard) keys before adding items.
HashSet<word> thisKeysSet;
{
List<keyType> keys = thisDict.keys(false);
forAll(keys, i)
{
thisKeysSet.insert(keys[i]);
}
}
// Pass 1. All literal matches
forAllConstIter(IDLList<entry>, mergeDict, mergeIter)
{
const keyType& key = mergeIter().keyword();
if (key[0] == '~')
{
word eraseKey = key(1, key.size()-1);
if (thisDict.remove(eraseKey))
{
// Mark thisDict entry as having been match for wildcard
// handling later on.
thisKeysSet.erase(eraseKey);
}
changed = true;
}
else if (literalRE || !(key.isPattern() || shortcuts.found(key)))
{
entry* entryPtr = thisDict.lookupEntryPtr
(
key,
false, // recursive
false // patternMatch
);
if (entryPtr)
{
// Mark thisDict entry as having been match for wildcard
// handling later on.
thisKeysSet.erase(entryPtr->keyword());
if
(
addEntry
(
thisDict,
*entryPtr,
mergeIter(),
literalRE,
shortcuts
)
)
{
changed = true;
}
}
else
{
// not found - just add
thisDict.add(mergeIter().clone(thisDict).ptr());
changed = true;
}
}
}
// Pass 2. Wildcard or shortcut matches (if any) on any non-match keys.
if (!literalRE && thisKeysSet.size() > 0)
{
// Pick up remaining dictionary entries
wordList thisKeys(thisKeysSet.toc());
forAllConstIter(IDLList<entry>, mergeDict, mergeIter)
{
const keyType& key = mergeIter().keyword();
if (key[0] == '~')
{
word eraseKey = key(1, key.size()-1);
// List of indices into thisKeys
labelList matches
(
findMatches
(
shortcuts,
shortcutNames,
thisKeys,
eraseKey
)
);
// Remove all matches
forAll(matches, i)
{
const word& thisKey = thisKeys[matches[i]];
thisKeysSet.erase(thisKey);
}
changed = true;
}
else
{
// List of indices into thisKeys
labelList matches
(
findMatches
(
shortcuts,
shortcutNames,
thisKeys,
key
)
);
// Add all matches
forAll(matches, i)
{
const word& thisKey = thisKeys[matches[i]];
entry& thisEntry = const_cast<entry&>
(
thisDict.lookupEntry(thisKey, false, false)
);
if
(
addEntry
(
thisDict,
thisEntry,
mergeIter(),
literalRE,
HashTable<wordList, word>(0) // no shortcuts
// at deeper levels
)
)
{
changed = true;
}
}
}
}
}
return changed;
}
int main(int argc, char *argv[])
{
#include "addDictOption.H"
argList::addOption
(
"instance",
"name",
"override instance setting (default is the time name)"
);
// Add explicit time option
timeSelector::addOptions();
argList::addBoolOption
(
"literalRE",
"treat regular expressions literally (i.e., as a keyword)"
);
argList::addBoolOption
(
"enableFunctionEntries",
"enable expansion of dictionary directives - #include, #codeStream etc"
);
argList::addBoolOption
(
"disablePatchGroups",
"disable matching keys to patch groups"
);
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
// Optionally override controlDict time with -time options
instantList times = timeSelector::selectIfPresent(runTime, args);
if (times.size() < 1)
{
FatalErrorIn(args.executable())
<< "No times selected." << exit(FatalError);
}
runTime.setTime(times[0], 0);
word instance = args.optionLookupOrDefault("instance", runTime.timeName());
#include "createNamedMesh.H"
const bool literalRE = args.optionFound("literalRE");
if (literalRE)
{
Info<< "Not interpreting any regular expressions (RE)"
<< " in the changeDictionaryDict." << endl
<< "Instead they are handled as any other entry, i.e. added if"
<< " not present." << endl;
}
const bool enableEntries = args.optionFound("enableFunctionEntries");
if (enableEntries)
{
Info<< "Allowing dictionary preprocessing ('#include', '#codeStream')."
<< endl;
}
int oldFlag = entry::disableFunctionEntries;
if (!enableEntries)
{
// By default disable dictionary expansion for fields
entry::disableFunctionEntries = 1;
}
const bool disablePatchGroups = args.optionFound("disablePatchGroups");
if (disablePatchGroups)
{
Info<< "Not interpreting any keys in the changeDictionary"
<< " as patchGroups"
<< endl;
}
fileName regionPrefix = "";
if (regionName != fvMesh::defaultRegion)
{
regionPrefix = regionName;
}
// Make sure we do not use the master-only reading since we read
// fields (different per processor) as dictionaries.
regIOobject::fileModificationChecking = regIOobject::timeStamp;
// Get the replacement rules from a dictionary
const word dictName("changeDictionaryDict");
#include "setSystemMeshDictionaryIO.H"
IOdictionary dict(dictIO);
const dictionary& replaceDicts = dict.subDict("dictionaryReplacement");
Info<< "Read dictionary " << dict.name()
<< " with replacements for dictionaries "
<< replaceDicts.toc() << endl;
// Always read boundary to get patch groups
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Info<< "Reading polyMesh/boundary file to extract patch names"
<< endl;
// Read PtrList of dictionary as dictionary.
const word oldTypeName = IOPtrList<entry>::typeName;
const_cast<word&>(IOPtrList<entry>::typeName) = word::null;
IOPtrList<entry> dictList
(
IOobject
(
"boundary",
runTime.findInstance
(
regionPrefix/polyMesh::meshSubDir,
"boundary",
IOobject::READ_IF_PRESENT
),
polyMesh::meshSubDir,
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
)
);
const_cast<word&>(IOPtrList<entry>::typeName) = oldTypeName;
// Fake type back to what was in field
const_cast<word&>(dictList.type()) = dictList.headerClassName();
// Temporary convert to dictionary
dictionary fieldDict;
forAll(dictList, i)
{
fieldDict.add(dictList[i].keyword(), dictList[i].dict());
}
if (dictList.size())
{
Info<< "Loaded dictionary " << dictList.name()
<< " with entries " << fieldDict.toc() << endl;
}
// Extract any patchGroups information (= shortcut for set of
// patches)
HashTable<wordList, word> patchGroups;
if (!disablePatchGroups)
{
patchGroups = extractPatchGroups(fieldDict);
if (patchGroups.size())
{
Info<< "Extracted patch groups:" << endl;
wordList groups(patchGroups.sortedToc());
forAll(groups, i)
{
Info<< " group " << groups[i] << " with patches "
<< patchGroups[groups[i]] << endl;
}
}
}
// Every replacement is a dictionary name and a keyword in this
forAllConstIter(dictionary, replaceDicts, fieldIter)
{
const word& fieldName = fieldIter().keyword();
Info<< "Replacing entries in dictionary " << fieldName << endl;
// Handle 'boundary' specially:
// - is PtrList of dictionaries
// - is in polyMesh/
if (fieldName == "boundary")
{
Info<< "Special handling of " << fieldName
<< " as polyMesh/boundary file." << endl;
// Get the replacement dictionary for the field
const dictionary& replaceDict = fieldIter().dict();
Info<< "Merging entries from " << replaceDict.toc() << endl;
// Merge the replacements in
merge(fieldDict, replaceDict, literalRE, patchGroups);
Info<< "fieldDict:" << fieldDict << endl;
// Convert back into dictList
wordList doneKeys(dictList.size());
label nEntries = fieldDict.size();
forAll(dictList, i)
{
doneKeys[i] = dictList[i].keyword();
dictList.set
(
i,
fieldDict.lookupEntry
(
doneKeys[i],
false,
true
).clone()
);
fieldDict.remove(doneKeys[i]);
}
// Add remaining entries
label sz = dictList.size();
dictList.setSize(nEntries);
forAllConstIter(dictionary, fieldDict, iter)
{
dictList.set(sz++, iter().clone());
}
Info<< "Writing modified " << fieldName << endl;
dictList.writeObject
(
runTime.writeFormat(),
runTime.writeFormat(),
IOstream::UNCOMPRESSED
);
}
else
{
// Read dictionary. (disable class type checking so we can load
// field)
Info<< "Loading dictionary " << fieldName << endl;
const word oldTypeName = IOdictionary::typeName;
const_cast<word&>(IOdictionary::typeName) = word::null;
IOdictionary fieldDict
(
IOobject
(
fieldName,
instance,
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
const_cast<word&>(IOdictionary::typeName) = oldTypeName;
// Fake type back to what was in field
const_cast<word&>(fieldDict.type()) = fieldDict.headerClassName();
Info<< "Loaded dictionary " << fieldName
<< " with entries " << fieldDict.toc() << endl;
// Get the replacement dictionary for the field
const dictionary& replaceDict = fieldIter().dict();
Info<< "Merging entries from " << replaceDict.toc() << endl;
// Merge the replacements in
merge(fieldDict, replaceDict, literalRE, patchGroups);
Info<< "Writing modified fieldDict " << fieldName << endl;
fieldDict.regIOobject::write();
}
}
entry::disableFunctionEntries = oldFlag;
Info<< endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,89 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object changeDictionaryDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dictionaryReplacement
{
boundary
{
".*"
{
type mappedPatch;
}
}
T
{
internalField uniform 300;
boundaryField
{
".*"
{
type zeroGradient;
}
minY
{
type fixedValue;
value uniform 500;
}
}
}
rho
{
internalField uniform 8000;
boundaryField
{
".*"
{
type zeroGradient;
}
}
}
K
{
internalField uniform 80;
boundaryField
{
".*"
{
type zeroGradient;
}
}
}
cp
{
internalField uniform 450;
boundaryField
{
".*"
{
type zeroGradient;
}
}
}
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
createExternalCoupledPatchGeometry.C
EXE = $(FOAM_APPBIN)/createExternalCoupledPatchGeometry

View File

@ -0,0 +1,6 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lcompressibleTurbulenceModel

View File

@ -0,0 +1,87 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
createExternalCoupledPatchGeometry.
Description
Application to generate the patch geometry (points and faces) for use
with the externalCoupled boundary condition.
Usage:
createExternalCoupledPatchGeometry \<fieldName\>
On execution, the field \<fieldName\> is read, and its boundary conditions
interrogated for the presence of an \c externalCoupled type. If found,
the patch geometry (points and faces) for the coupled patches are output
to the communications directory.
Note:
The addressing is patch-local, i.e. point indices for each patch point
used for face addressing starts at index 0.
SeeAlso
externalCoupledMixedFvPatchField
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "createExternalCoupledPatchGeometryTemplates.H"
#include "IOobjectList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
argList::validArgs.append("fieldName");
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
const word fieldName = args[1];
IOobjectList objects(IOobjectList(mesh, mesh.time().timeName()));
label processed = -1;
processField<scalar>(mesh, objects, fieldName, processed);
processField<vector>(mesh, objects, fieldName, processed);
processField<sphericalTensor>(mesh, objects, fieldName, processed);
processField<symmTensor>(mesh, objects, fieldName, processed);
processField<tensor>(mesh, objects, fieldName, processed);
if (processed == -1)
{
Info<< "Field " << fieldName << " not found" << endl;
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,90 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "createExternalCoupledPatchGeometryTemplates.H"
#include "externalCoupledMixedFvPatchField.H"
#include "IOobjectList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
void processField
(
const fvMesh& mesh,
const IOobjectList& objects,
const word& fieldName,
label& processed
)
{
if (processed != -1)
{
return;
}
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
const word timeName(mesh.time().timeName());
IOobjectList fieldObjbjects(objects.lookupClass(fieldType::typeName));
if (fieldObjbjects.lookup(fieldName) != NULL)
{
fieldType vtf(*fieldObjbjects.lookup(fieldName), mesh);
const typename fieldType::GeometricBoundaryField& bf =
vtf.boundaryField();
forAll(bf, patchI)
{
if (isA<externalCoupledMixedFvPatchField<Type> >(bf[patchI]))
{
Info<< "Generating external coupled geometry for field "
<< fieldName << endl;
const externalCoupledMixedFvPatchField<Type>& pf =
refCast<const externalCoupledMixedFvPatchField<Type> >
(
bf[patchI]
);
pf.writeGeometry();
processed = 1;
break;
}
}
if (processed != 1)
{
processed = 0;
Info<< "Field " << fieldName << " found, but does not have any "
<< externalCoupledMixedFvPatchField<Type>::typeName
<< " boundary conditions" << endl;
}
}
}
// ************************************************************************* //

View File

@ -0,0 +1,49 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#ifndef createExternalCoupledPatchGeometryTemplates_H
#define createExternalCoupledPatchGeometryTemplates_H
#include "word.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type>
void processField(bool& processed, const word& fieldName);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "createExternalCoupledPatchGeometryTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
dsmcInitialise.C
EXE = $(FOAM_APPBIN)/dsmcInitialise

View File

@ -0,0 +1,11 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/lagrangian/dsmc/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lmeshTools \
-lfiniteVolume \
-llagrangian \
-ldsmc

View File

@ -0,0 +1,90 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
dsmcInitialise
Description
Initialise a case for dsmcFoam by reading the initialisation dictionary
system/dsmcInitialise.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dsmcCloud.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
IOdictionary dsmcInitialiseDict
(
IOobject
(
"dsmcInitialiseDict",
mesh.time().system(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
Info<< "Initialising dsmc for Time = " << runTime.timeName() << nl << endl;
dsmcCloud dsmc("dsmc", mesh, dsmcInitialiseDict);
label totalMolecules = dsmc.size();
if (Pstream::parRun())
{
reduce(totalMolecules, sumOp<label>());
}
Info<< nl << "Total number of molecules added: " << totalMolecules
<< nl << endl;
IOstream::defaultPrecision(15);
if (!mesh.write())
{
FatalErrorIn(args.executable())
<< "Failed writing dsmcCloud."
<< nl << exit(FatalError);
}
Info<< nl << "ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
engineSwirl.C
EXE = $(FOAM_APPBIN)/engineSwirl

View File

@ -0,0 +1,7 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,79 @@
Info<< "Reading combustion properties\n" << endl;
IOdictionary engineGeometry
(
IOobject
(
"engineGeometry",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
vector swirlAxis
(
engineGeometry.lookup("swirlAxis")
);
vector swirlCenter
(
engineGeometry.lookup("swirlCenter")
);
dimensionedScalar swirlRPMRatio
(
engineGeometry.lookup("swirlRPMRatio")
);
dimensionedScalar swirlProfile
(
engineGeometry.lookup("swirlProfile")
);
dimensionedScalar bore
(
engineGeometry.lookup("bore")
);
dimensionedScalar rpm
(
engineGeometry.lookup("rpm")
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
vector zT = swirlAxis;
vector yT = vector(0, zT.z(), -zT.y());
vector xT = vector
(
zT.y()*zT.y() + zT.z()*zT.z(),
-zT.x()*zT.y(),
-zT.x()*zT.z()
);
// if swirl is around (1, 0, 0) we have to find another transformation
if (mag(yT) < SMALL)
{
yT = vector(zT.y(), -zT.x(), 0);
xT = vector(-zT.x()*zT.z(), -zT.y()*zT.z(), zT.x()*zT.x() + zT.y()*zT.y());
}
//swirlAxis doesn't have to be of unit length.
xT /= mag(xT);
yT /= mag(yT);
zT /= mag(zT);

View File

@ -0,0 +1,81 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
engineSwirl
Description
Generates a swirling flow for engine calulations.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
scalar Vphi = (constant::mathematical::pi*swirlRPMRatio*rpm/30).value();
scalar b1 = j1(swirlProfile).value();
scalar b2 = 2.0*b1/swirlProfile.value() - j0(swirlProfile).value();
scalar omega = 0.125*(Vphi*bore*swirlProfile/b2).value();
scalar cylinderRadius = 0.5*bore.value();
scalar Umax = 0.0;
forAll(mesh.C(), celli)
{
vector c = mesh.C()[celli] - swirlCenter;
scalar r = ::pow(sqr(c & xT) + sqr(c & yT), 0.5);
if (r <= cylinderRadius)
{
scalar b = j1(swirlProfile*r/cylinderRadius).value();
scalar vEff = omega*b;
r = max(r, SMALL);
U[celli] = ((vEff/r)*(c & yT))*xT + (-(vEff/r)*(c & xT))*yT;
Umax = max(Umax, mag(U[celli]));
}
}
Info<< "Umax = " << Umax << endl;
U.write();
Info<< "\n end\n";
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
faceAgglomerate.C
EXE = $(FOAM_APPBIN)/faceAgglomerate

View File

@ -0,0 +1,11 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/OpenFOAM/lnInclude \
-I$(LIB_SRC)/fvAgglomerationMethods/pairPatchAgglomeration/lnInclude
EXE_LIBS = \
-lOpenFOAM \
-lfiniteVolume \
-lpairPatchAgglomeration \
-ltriSurface \
-lmeshTools

View File

@ -0,0 +1,204 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
faceAgglomerate
Description
Agglomerate boundary faces using the pairPatchAgglomeration algorithm.
It writes a map from the fine to coarse grid.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "fvMesh.H"
#include "Time.H"
#include "volFields.H"
#include "CompactListList.H"
#include "unitConversion.H"
#include "pairPatchAgglomeration.H"
#include "labelListIOList.H"
#include "syncTools.H"
#include "globalIndex.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
const word dictName("viewFactorsDict");
#include "setConstantMeshDictionaryIO.H"
// Read control dictionary
const IOdictionary agglomDict(dictIO);
bool writeAgglom = readBool(agglomDict.lookup("writeFacesAgglomeration"));
const polyBoundaryMesh& boundary = mesh.boundaryMesh();
labelListIOList finalAgglom
(
IOobject
(
"finalAgglom",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
boundary.size()
);
label nCoarseFaces = 0;
forAllConstIter(dictionary, agglomDict, iter)
{
labelList patchIds = boundary.findIndices(iter().keyword());
forAll(patchIds, i)
{
label patchI = patchIds[i];
const polyPatch& pp = boundary[patchI];
if (!pp.coupled())
{
Info << "\nAgglomerating patch : " << pp.name() << endl;
pairPatchAgglomeration agglomObject
(
pp,
agglomDict.subDict(pp.name())
);
agglomObject.agglomerate();
finalAgglom[patchI] =
agglomObject.restrictTopBottomAddressing();
if (finalAgglom[patchI].size())
{
nCoarseFaces += max(finalAgglom[patchI] + 1);
}
}
}
}
// - All patches which are not agglomarated are identity for finalAgglom
forAll(boundary, patchId)
{
if (finalAgglom[patchId].size() == 0)
{
finalAgglom[patchId] = identity(boundary[patchId].size());
}
}
// Sync agglomeration across coupled patches
labelList nbrAgglom(mesh.nFaces() - mesh.nInternalFaces(), -1);
forAll(boundary, patchId)
{
const polyPatch& pp = boundary[patchId];
if (pp.coupled())
{
finalAgglom[patchId] = identity(pp.size());
forAll(pp, i)
{
nbrAgglom[pp.start() - mesh.nInternalFaces() + i] =
finalAgglom[patchId][i];
}
}
}
syncTools::swapBoundaryFaceList(mesh, nbrAgglom);
forAll(boundary, patchId)
{
const polyPatch& pp = boundary[patchId];
if (pp.coupled() && !refCast<const coupledPolyPatch>(pp).owner())
{
forAll(pp, i)
{
finalAgglom[patchId][i] =
nbrAgglom[pp.start() - mesh.nInternalFaces() + i];
}
}
}
finalAgglom.write();
if (writeAgglom)
{
globalIndex index(nCoarseFaces);
volScalarField facesAgglomeration
(
IOobject
(
"facesAgglomeration",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("facesAgglomeration", dimless, 0)
);
label coarsePatchIndex = 0;
forAll(boundary, patchId)
{
const polyPatch& pp = boundary[patchId];
if (pp.size() > 0)
{
fvPatchScalarField& bFacesAgglomeration =
facesAgglomeration.boundaryField()[patchId];
forAll(bFacesAgglomeration, j)
{
bFacesAgglomeration[j] =
index.toGlobal
(
Pstream::myProcNo(),
finalAgglom[patchId][j] + coarsePatchIndex
);
}
coarsePatchIndex += max(finalAgglom[patchId]) + 1;
}
}
Info<< "\nWriting facesAgglomeration" << endl;
facesAgglomeration.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,34 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object viewFactorsDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Write agglomeration as a volScalarField with calculated boundary values
writeFacesAgglomeration true;
//Debug option
debug 0;
//Dump connectivity rays
dumpRays false;
// Per patch (wildcard possible) the coarsening level
bottomAir_to_heater
{
nFacesInCoarsestLevel 30;
featureAngle 10;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
foamUpgradeCyclics.C
EXE = $(FOAM_APPBIN)/foamUpgradeCyclics

View File

@ -0,0 +1,6 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,647 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
foamUpgradeCyclics
Description
Tool to upgrade mesh and fields for split cyclics.
Usage
- foamUpgradeCyclics [OPTION]
\param -test \n
Suppress writing the updated files with split cyclics
\param -enableFunctionEntries \n
By default all dictionary preprocessing of fields is disabled
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "timeSelector.H"
#include "IOdictionary.H"
#include "polyMesh.H"
#include "entry.H"
#include "IOPtrList.H"
#include "cyclicPolyPatch.H"
#include "dictionaryEntry.H"
#include "IOobjectList.H"
#include "volFields.H"
#include "pointFields.H"
#include "surfaceFields.H"
#include "string.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTemplateTypeNameAndDebug(IOPtrList<entry>, 0);
}
// Read boundary file without reading mesh
void rewriteBoundary
(
const bool isTestRun,
const IOobject& io,
const fileName& regionPrefix,
HashTable<word>& thisNames,
HashTable<word>& nbrNames
)
{
Info<< "Reading boundary from " << io.filePath() << endl;
// Read PtrList of dictionary.
const word oldTypeName = IOPtrList<entry>::typeName;
const_cast<word&>(IOPtrList<entry>::typeName) = word::null;
IOPtrList<entry> patches(io);
const_cast<word&>(IOPtrList<entry>::typeName) = oldTypeName;
// Fake type back to what was in field
const_cast<word&>(patches.type()) = patches.headerClassName();
// Replace any 'cyclic'
label nOldCyclics = 0;
forAll(patches, patchI)
{
const dictionary& patchDict = patches[patchI].dict();
if (word(patchDict["type"]) == cyclicPolyPatch::typeName)
{
if (!patchDict.found("neighbourPatch"))
{
Info<< "Patch " << patches[patchI].keyword()
<< " does not have 'neighbourPatch' entry; assuming it"
<< " is of the old type." << endl;
nOldCyclics++;
}
}
}
Info<< "Detected " << nOldCyclics << " old cyclics." << nl << endl;
// Save old patches.
PtrList<entry> oldPatches(patches);
// Extend
label nOldPatches = patches.size();
patches.setSize(nOldPatches+nOldCyclics);
// Create reordering map
labelList oldToNew(patches.size());
// Add new entries
label addedPatchI = nOldPatches;
label newPatchI = 0;
forAll(oldPatches, patchI)
{
const dictionary& patchDict = oldPatches[patchI].dict();
if
(
word(patchDict["type"]) == cyclicPolyPatch::typeName
)
{
const word& name = oldPatches[patchI].keyword();
if (patchDict.found("neighbourPatch"))
{
patches.set(patchI, oldPatches.set(patchI, NULL));
oldToNew[patchI] = newPatchI++;
// Check if patches come from automatic conversion
word oldName;
string::size_type i = name.rfind("_half0");
if (i != string::npos)
{
oldName = name.substr(0, i);
thisNames.insert(oldName, name);
Info<< "Detected converted cyclic patch " << name
<< " ; assuming it originates from " << oldName
<< endl;
}
else
{
i = name.rfind("_half1");
if (i != string::npos)
{
oldName = name.substr(0, i);
nbrNames.insert(oldName, name);
Info<< "Detected converted cyclic patch " << name
<< " ; assuming it originates from " << oldName
<< endl;
}
}
}
else
{
label nFaces = readLabel(patchDict["nFaces"]);
label startFace = readLabel(patchDict["startFace"]);
Info<< "Detected old style " << word(patchDict["type"])
<< " patch " << name << " with" << nl
<< " nFaces : " << nFaces << nl
<< " startFace : " << startFace << endl;
word thisName = name + "_half0";
word nbrName = name + "_half1";
thisNames.insert(name, thisName);
nbrNames.insert(name, nbrName);
// Save current dictionary
const dictionary patchDict(patches[patchI].dict());
// Change entry on this side
patches.set(patchI, oldPatches.set(patchI, NULL));
oldToNew[patchI] = newPatchI++;
dictionary& thisPatchDict = patches[patchI].dict();
thisPatchDict.add("neighbourPatch", nbrName);
thisPatchDict.set("nFaces", nFaces/2);
patches[patchI].keyword() = thisName;
// Add entry on other side
patches.set
(
addedPatchI,
new dictionaryEntry
(
nbrName,
dictionary::null,
patchDict
)
);
oldToNew[addedPatchI] = newPatchI++;
dictionary& nbrPatchDict = patches[addedPatchI].dict();
nbrPatchDict.set("neighbourPatch", thisName);
nbrPatchDict.set("nFaces", nFaces/2);
nbrPatchDict.set("startFace", startFace+nFaces/2);
patches[addedPatchI].keyword() = nbrName;
Info<< "Replaced with patches" << nl
<< patches[patchI].keyword() << " with" << nl
<< " nFaces : "
<< readLabel(thisPatchDict.lookup("nFaces"))
<< nl
<< " startFace : "
<< readLabel(thisPatchDict.lookup("startFace")) << nl
<< patches[addedPatchI].keyword() << " with" << nl
<< " nFaces : "
<< readLabel(nbrPatchDict.lookup("nFaces"))
<< nl
<< " startFace : "
<< readLabel(nbrPatchDict.lookup("startFace"))
<< nl << endl;
addedPatchI++;
}
}
else
{
patches.set(patchI, oldPatches.set(patchI, NULL));
oldToNew[patchI] = newPatchI++;
}
}
patches.reorder(oldToNew);
if (returnReduce(nOldCyclics, sumOp<label>()) > 0)
{
if (isTestRun)
{
//Info<< "-test option: no changes made" << nl << endl;
}
else
{
if (mvBak(patches.objectPath(), "old"))
{
Info<< "Backup to "
<< (patches.objectPath() + ".old") << nl;
}
Info<< "Write to "
<< patches.objectPath() << nl << endl;
patches.write();
}
}
else
{
Info<< "No changes made to boundary file." << nl << endl;
}
}
void rewriteField
(
const bool isTestRun,
const Time& runTime,
const word& fieldName,
const HashTable<word>& thisNames,
const HashTable<word>& nbrNames
)
{
// Read dictionary. (disable class type checking so we can load
// field)
Info<< "Loading field " << fieldName << endl;
const word oldTypeName = IOdictionary::typeName;
const_cast<word&>(IOdictionary::typeName) = word::null;
IOdictionary fieldDict
(
IOobject
(
fieldName,
runTime.timeName(),
runTime,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
const_cast<word&>(IOdictionary::typeName) = oldTypeName;
// Fake type back to what was in field
const_cast<word&>(fieldDict.type()) = fieldDict.headerClassName();
dictionary& boundaryField = fieldDict.subDict("boundaryField");
label nChanged = 0;
forAllConstIter(HashTable<word>, thisNames, iter)
{
const word& patchName = iter.key();
const word& newName = iter();
Info<< "Looking for entry for patch " << patchName << endl;
// Find old patch name either direct or through wildcards
// Find new patch name direct only
if
(
boundaryField.found(patchName)
&& !boundaryField.found(newName, false, false)
)
{
Info<< " Changing entry " << patchName << " to " << newName
<< endl;
dictionary& patchDict = boundaryField.subDict(patchName);
if (patchDict.found("value"))
{
// Remove any value field since wrong size.
patchDict.remove("value");
}
boundaryField.changeKeyword(patchName, newName);
boundaryField.add
(
nbrNames[patchName],
patchDict
);
Info<< " Adding entry " << nbrNames[patchName] << endl;
nChanged++;
}
}
//Info<< "New boundaryField:" << boundaryField << endl;
if (returnReduce(nChanged, sumOp<label>()) > 0)
{
if (isTestRun)
{
//Info<< "-test option: no changes made" << endl;
}
else
{
if (mvBak(fieldDict.objectPath(), "old"))
{
Info<< "Backup to "
<< (fieldDict.objectPath() + ".old") << nl;
}
Info<< "Write to "
<< fieldDict.objectPath() << endl;
fieldDict.regIOobject::write();
}
}
else
{
Info<< "No changes made to field " << fieldName << endl;
}
Info<< endl;
}
void rewriteFields
(
const bool isTestRun,
const Time& runTime,
const wordList& fieldNames,
const HashTable<word>& thisNames,
const HashTable<word>& nbrNames
)
{
forAll(fieldNames, i)
{
rewriteField
(
isTestRun,
runTime,
fieldNames[i],
thisNames,
nbrNames
);
}
}
int main(int argc, char *argv[])
{
timeSelector::addOptions();
argList::addBoolOption("test", "test only; do not change any files");
argList::addBoolOption
(
"enableFunctionEntries",
"enable expansion of dictionary directives - #include, #codeStream etc"
);
# include "addRegionOption.H"
# include "setRootCase.H"
# include "createTime.H"
// Make sure we do not use the master-only reading since we read
// fields (different per processor) as dictionaries.
regIOobject::fileModificationChecking = regIOobject::timeStamp;
instantList timeDirs = timeSelector::select0(runTime, args);
const bool isTestRun = args.optionFound("test");
if (isTestRun)
{
Info<< "-test option: no changes made" << nl << endl;
}
const bool enableEntries = args.optionFound("enableFunctionEntries");
Foam::word regionName = polyMesh::defaultRegion;
args.optionReadIfPresent("region", regionName);
fileName regionPrefix = "";
if (regionName != polyMesh::defaultRegion)
{
regionPrefix = regionName;
}
// Per cyclic patch the new name for this side and the other side
HashTable<word> thisNames;
HashTable<word> nbrNames;
// Rewrite constant boundary file. Return any patches that have been split.
IOobject io
(
"boundary",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (io.headerOk())
{
rewriteBoundary
(
isTestRun,
io,
regionPrefix,
thisNames,
nbrNames
);
}
// Convert any fields
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time: " << runTime.timeName() << endl;
// See if mesh in time directory
IOobject io
(
"boundary",
runTime.timeName(),
polyMesh::meshSubDir,
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (io.headerOk())
{
rewriteBoundary
(
isTestRun,
io,
regionPrefix,
thisNames,
nbrNames
);
}
IOobjectList objects(runTime, runTime.timeName());
int oldFlag = entry::disableFunctionEntries;
if (!enableEntries)
{
// By default disable dictionary expansion for fields
entry::disableFunctionEntries = 1;
}
// volFields
// ~~~~~~~~~
rewriteFields
(
isTestRun,
runTime,
objects.names(volScalarField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(volVectorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(volSphericalTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(volSymmTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(volTensorField::typeName),
thisNames,
nbrNames
);
// pointFields
// ~~~~~~~~~~~
rewriteFields
(
isTestRun,
runTime,
objects.names(pointScalarField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(pointVectorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(pointSphericalTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(pointSymmTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(pointTensorField::typeName),
thisNames,
nbrNames
);
// surfaceFields
// ~~~~~~~~~~~
rewriteFields
(
isTestRun,
runTime,
objects.names(surfaceScalarField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(surfaceVectorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(surfaceSphericalTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(surfaceSymmTensorField::typeName),
thisNames,
nbrNames
);
rewriteFields
(
isTestRun,
runTime,
objects.names(surfaceTensorField::typeName),
thisNames,
nbrNames
);
entry::disableFunctionEntries = oldFlag;
}
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
foamUpgradeFvSolution.C
EXE = $(FOAM_APPBIN)/foamUpgradeFvSolution

View File

@ -0,0 +1,115 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
foamUpgradeFvSolution
Description
Simple tool to upgrade the syntax of system/fvSolution.solvers.
Usage
foamUpgradeFvSolution [OPTION]
\param -test \n
Suppress writing the updated fvSolution file
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "IOdictionary.H"
#include "solution.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"upgrade the syntax of system/fvSolution::solvers"
);
argList::noParallel();
argList::addBoolOption
(
"test",
"suppress writing the updated system/fvSolution file"
);
#include "setRootCase.H"
#include "createTime.H"
IOdictionary solutionDict
(
IOobject
(
"fvSolution",
runTime.system(),
runTime,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
label nChanged = 0;
entry* e = solutionDict.lookupEntryPtr("solvers", false, false);
if (e && e->isDict())
{
nChanged = solution::upgradeSolverDict(e->dict(), true);
}
Info<< nChanged << " solver settings changed" << nl << endl;
if (nChanged)
{
if (args.optionFound("test"))
{
Info<< "-test option: no changes made" << nl << endl;
}
else
{
if (mvBak(solutionDict.objectPath(), "old"))
{
Info<< "Backup to "
<< (solutionDict.objectPath() + ".old") << nl;
}
solutionDict.writeObject
(
IOstream::ASCII,
IOstream::currentVersion,
IOstream::UNCOMPRESSED
);
Info<< "Write to "
<< solutionDict.objectPath() << nl << endl;
}
}
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,4 @@
mapLagrangian.C
mapFields.C
EXE = $(FOAM_APPBIN)/mapFields

View File

@ -0,0 +1,12 @@
EXE_INC = \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lsampling \
-lmeshTools \
-llagrangian \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,184 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
InNamespace
Foam
Description
Gets the indices of (source)particles that have been appended to the
target cloud and maps the lagrangian fields accordingly.
\*---------------------------------------------------------------------------*/
#ifndef MapLagrangianFields_H
#define MapLagrangianFields_H
#include "cloud.H"
#include "GeometricField.H"
#include "meshToMesh.H"
#include "IOobjectList.H"
#include "CompactIOField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
//- Gets the indices of (source)particles that have been appended to the
// target cloud and maps the lagrangian fields accordingly.
template<class Type>
void MapLagrangianFields
(
const string& cloudName,
const IOobjectList& objects,
const polyMesh& meshTarget,
const labelList& addParticles
)
{
{
IOobjectList fields = objects.lookupClass(IOField<Type>::typeName);
forAllIter(IOobjectList, fields, fieldIter)
{
const word& fieldName = fieldIter()->name();
Info<< " mapping lagrangian field " << fieldName << endl;
// Read field (does not need mesh)
IOField<Type> fieldSource(*fieldIter());
// Map
IOField<Type> fieldTarget
(
IOobject
(
fieldName,
meshTarget.time().timeName(),
cloud::prefix/cloudName,
meshTarget,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
addParticles.size()
);
forAll(addParticles, i)
{
fieldTarget[i] = fieldSource[addParticles[i]];
}
// Write field
fieldTarget.write();
}
}
{
IOobjectList fieldFields =
objects.lookupClass(IOField<Field<Type> >::typeName);
forAllIter(IOobjectList, fieldFields, fieldIter)
{
const word& fieldName = fieldIter()->name();
Info<< " mapping lagrangian fieldField " << fieldName << endl;
// Read field (does not need mesh)
IOField<Field<Type> > fieldSource(*fieldIter());
// Map - use CompactIOField to automatically write in
// compact form for binary format.
CompactIOField<Field<Type>, Type> fieldTarget
(
IOobject
(
fieldName,
meshTarget.time().timeName(),
cloud::prefix/cloudName,
meshTarget,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
addParticles.size()
);
forAll(addParticles, i)
{
fieldTarget[i] = fieldSource[addParticles[i]];
}
// Write field
fieldTarget.write();
}
}
{
IOobjectList fieldFields =
objects.lookupClass(CompactIOField<Field<Type>, Type>::typeName);
forAllIter(IOobjectList, fieldFields, fieldIter)
{
Info<< " mapping lagrangian fieldField "
<< fieldIter()->name() << endl;
// Read field (does not need mesh)
CompactIOField<Field<Type>, Type> fieldSource(*fieldIter());
// Map
CompactIOField<Field<Type>, Type> fieldTarget
(
IOobject
(
fieldIter()->name(),
meshTarget.time().timeName(),
cloud::prefix/cloudName,
meshTarget,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
addParticles.size()
);
forAll(addParticles, i)
{
fieldTarget[i] = fieldSource[addParticles[i]];
}
// Write field
fieldTarget.write();
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,131 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#ifndef MapMeshes_H
#define MapMeshes_H
#include "MapVolFields.H"
#include "mapLagrangian.H"
#include "UnMapped.H"
#include "pointMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<template<class> class CombineOp>
void MapMesh
(
const meshToMesh& interp,
const HashSet<word>& selectedFields,
const bool noLagrangian
)
{
{
const polyMesh& meshSource = interp.srcRegion();
// Search for list of objects for this time
IOobjectList objects(meshSource, meshSource.time().timeName());
// Map volFields
// ~~~~~~~~~~~~~
MapVolFields<scalar>
(
objects,
selectedFields,
interp,
CombineOp<scalar>()
);
MapVolFields<vector>
(
objects,
selectedFields,
interp,
CombineOp<vector>()
);
MapVolFields<sphericalTensor>
(
objects,
selectedFields,
interp,
CombineOp<sphericalTensor>()
);
MapVolFields<symmTensor>
(
objects,
selectedFields,
interp,
CombineOp<symmTensor>()
);
MapVolFields<tensor>
(
objects,
selectedFields,
interp,
CombineOp<tensor>()
);
}
{
const polyMesh& meshTarget = interp.tgtRegion();
// Search for list of target objects for this time
IOobjectList objects(meshTarget, meshTarget.time().timeName());
// Mark surfaceFields as unmapped
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
UnMapped<surfaceScalarField>(objects);
UnMapped<surfaceVectorField>(objects);
UnMapped<surfaceSphericalTensorField>(objects);
UnMapped<surfaceSymmTensorField>(objects);
UnMapped<surfaceTensorField>(objects);
// Mark pointFields as unmapped
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
UnMapped<pointScalarField>(objects);
UnMapped<pointVectorField>(objects);
UnMapped<pointSphericalTensorField>(objects);
UnMapped<pointSymmTensorField>(objects);
UnMapped<pointTensorField>(objects);
}
if (!noLagrangian)
{
mapLagrangian(interp);
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,104 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#ifndef MapConsistentVolFields_H
#define MapConsistentVolFields_H
#include "GeometricField.H"
#include "meshToMesh.H"
#include "IOobjectList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type, class CombineOp>
void MapVolFields
(
const IOobjectList& objects,
const HashSet<word>& selectedFields,
const meshToMesh& interp,
const CombineOp& cop
)
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
const fvMesh& meshSource = static_cast<const fvMesh&>(interp.srcRegion());
const fvMesh& meshTarget = static_cast<const fvMesh&>(interp.tgtRegion());
IOobjectList fields = objects.lookupClass(fieldType::typeName);
forAllIter(IOobjectList, fields, fieldIter)
{
const word& fieldName = fieldIter()->name();
if (selectedFields.empty() || selectedFields.found(fieldName))
{
Info<< " interpolating " << fieldName << endl;
const fieldType fieldSource(*fieldIter(), meshSource);
IOobject targetIO
(
fieldName,
meshTarget.time().timeName(),
meshTarget,
IOobject::MUST_READ
);
if (targetIO.headerOk())
{
fieldType fieldTarget(targetIO, meshTarget);
interp.mapSrcToTgt(fieldSource, cop, fieldTarget);
fieldTarget.write();
}
else
{
targetIO.readOpt() = IOobject::NO_READ;
tmp<fieldType>
tfieldTarget(interp.mapSrcToTgt(fieldSource, cop));
fieldType fieldTarget(targetIO, tfieldTarget);
fieldTarget.write();
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,57 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#ifndef UnMapped_H
#define UnMapped_H
#include "IOobjectList.H"
#include "OSspecific.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type>
void UnMapped(const IOobjectList& objects)
{
IOobjectList fields = objects.lookupClass(Type::typeName);
forAllConstIter(IOobjectList, fields, fieldIter)
{
mvBak(fieldIter()->objectPath(), "unmapped");
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,11 @@
Info<< "\nCreate databases as time" << endl;
HashTable<string> srcOptions(args.options());
srcOptions.erase("case");
srcOptions.insert("case", fileName(rootDirSource/caseDirSource));
argList argsSrc(args, srcOptions, false, false, false);
Time runTimeSource(Time::controlDictName, argsSrc);
Time runTimeTarget(Time::controlDictName, args);

View File

@ -0,0 +1,387 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
mapFields
Description
Maps volume fields from one mesh to another, reading and
interpolating all fields present in the time directory of both cases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "meshToMesh.H"
#include "processorPolyPatch.H"
#include "MapMeshes.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void mapConsistentMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const word& mapMethod,
const word& AMIMapMethod,
const bool subtract,
const HashSet<word>& selectedFields,
const bool noLagrangian
)
{
Info<< nl << "Consistently creating and mapping fields for time "
<< meshSource.time().timeName() << nl << endl;
meshToMesh interp(meshSource, meshTarget, mapMethod, AMIMapMethod);
if (subtract)
{
MapMesh<minusEqOp>
(
interp,
selectedFields,
noLagrangian
);
}
else
{
MapMesh<plusEqOp>
(
interp,
selectedFields,
noLagrangian
);
}
}
void mapSubMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const HashTable<word>& patchMap,
const wordList& cuttingPatches,
const word& mapMethod,
const word& AMIMapMethod,
const bool subtract,
const HashSet<word>& selectedFields,
const bool noLagrangian
)
{
Info<< nl << "Creating and mapping fields for time "
<< meshSource.time().timeName() << nl << endl;
meshToMesh interp
(
meshSource,
meshTarget,
mapMethod,
AMIMapMethod,
patchMap,
cuttingPatches
);
if (subtract)
{
MapMesh<minusEqOp>
(
interp,
selectedFields,
noLagrangian
);
}
else
{
MapMesh<plusEqOp>
(
interp,
selectedFields,
noLagrangian
);
}
}
wordList addProcessorPatches
(
const fvMesh& meshTarget,
const wordList& cuttingPatches
)
{
// Add the processor patches to the cutting list
HashSet<word> cuttingPatchTable;
forAll(cuttingPatches, i)
{
cuttingPatchTable.insert(cuttingPatches[i]);
}
const polyBoundaryMesh& pbm = meshTarget.boundaryMesh();
forAll(pbm, patchI)
{
if (isA<processorPolyPatch>(pbm[patchI]))
{
const word& patchName = pbm[patchI].name();
cuttingPatchTable.insert(patchName);
}
}
return cuttingPatchTable.toc();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"map volume fields from one mesh to another"
);
argList::validArgs.append("sourceCase");
argList::addOption
(
"sourceTime",
"scalar|'latestTime'",
"specify the source time"
);
argList::addOption
(
"sourceRegion",
"word",
"specify the source region"
);
argList::addOption
(
"targetRegion",
"word",
"specify the target region"
);
argList::addBoolOption
(
"consistent",
"source and target geometry and boundary conditions identical"
);
argList::addOption
(
"mapMethod",
"word",
"specify the mapping method (direct|mapNearest|cellVolumeWeight)"
);
argList::addOption
(
"patchMapMethod",
"word",
"specify the patch mapping method (direct|mapNearest|faceAreaWeight)"
);
argList::addBoolOption
(
"subtract",
"subtract mapped source from target"
);
argList::addOption
(
"fields",
"list",
"specify a list of fields to be mapped. Eg, '(U T p)' - "
"regular expressions not currently supported"
);
argList::addBoolOption
(
"noLagrangian",
"skip mapping lagrangian positions and fields"
);
argList args(argc, argv);
fileName rootDirTarget(args.rootPath());
fileName caseDirTarget(args.globalCaseName());
const fileName casePath = args[1];
const fileName rootDirSource = casePath.path();
const fileName caseDirSource = casePath.name();
Info<< "Source: " << rootDirSource << " " << caseDirSource << endl;
word sourceRegion = fvMesh::defaultRegion;
if (args.optionFound("sourceRegion"))
{
sourceRegion = args["sourceRegion"];
Info<< "Source region: " << sourceRegion << endl;
}
Info<< "Target: " << rootDirTarget << " " << caseDirTarget << endl;
word targetRegion = fvMesh::defaultRegion;
if (args.optionFound("targetRegion"))
{
targetRegion = args["targetRegion"];
Info<< "Target region: " << targetRegion << endl;
}
const bool consistent = args.optionFound("consistent");
word mapMethod = meshToMesh::interpolationMethodNames_
[
meshToMesh::imCellVolumeWeight
];
if (args.optionReadIfPresent("mapMethod", mapMethod))
{
Info<< "Mapping method: " << mapMethod << endl;
}
word patchMapMethod;
if (meshToMesh::interpolationMethodNames_.found(mapMethod))
{
// Lookup corresponding AMI method
meshToMesh::interpolationMethod method =
meshToMesh::interpolationMethodNames_[mapMethod];
patchMapMethod = AMIPatchToPatchInterpolation::interpolationMethodToWord
(
meshToMesh::interpolationMethodAMI(method)
);
}
// Optionally override
if (args.optionFound("patchMapMethod"))
{
patchMapMethod = args["patchMapMethod"];
Info<< "Patch mapping method: " << patchMapMethod << endl;
}
if (patchMapMethod.empty())
{
FatalErrorIn(args.executable())
<< "No valid patchMapMethod for method " << mapMethod
<< ". Please supply one through the 'patchMapMethod' option"
<< exit(FatalError);
}
const bool subtract = args.optionFound("subtract");
if (subtract)
{
Info<< "Subtracting mapped source field from target" << endl;
}
HashSet<word> selectedFields;
if (args.optionFound("fields"))
{
args.optionLookup("fields")() >> selectedFields;
}
const bool noLagrangian = args.optionFound("noLagrangian");
#include "createTimes.H"
HashTable<word> patchMap;
wordList cuttingPatches;
if (!consistent)
{
IOdictionary mapFieldsDict
(
IOobject
(
"mapFieldsDict",
runTimeTarget.system(),
runTimeTarget,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
mapFieldsDict.lookup("patchMap") >> patchMap;
mapFieldsDict.lookup("cuttingPatches") >> cuttingPatches;
}
#include "setTimeIndex.H"
Info<< "\nCreate meshes\n" << endl;
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "Source mesh size: " << meshSource.nCells() << tab
<< "Target mesh size: " << meshTarget.nCells() << nl << endl;
if (consistent)
{
mapConsistentMesh
(
meshSource,
meshTarget,
mapMethod,
patchMapMethod,
subtract,
selectedFields,
noLagrangian
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
addProcessorPatches(meshTarget, cuttingPatches),
mapMethod,
patchMapMethod,
subtract,
selectedFields,
noLagrangian
);
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,36 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object mapFieldsDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Specify how to map patches. There are three different options:
// - patch exists in the source case: specify mapping (patchMap)
// - patch should be interpolated from internal values in source case
// (cuttingPatches)
// - patch should not be mapped. Default if not in patchMap or cuttingPatches
// List of pairs of target/source patches for mapping
patchMap
(
lid movingWall
);
// List of target patches cutting the source domain (these need to be
// handled specially e.g. interpolated from internal values)
cuttingPatches
(
fixedWalls
);
// ************************************************************************* //

View File

@ -0,0 +1,303 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MapLagrangianFields.H"
#include "passiveParticleCloud.H"
#include "meshSearch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
static const scalar perturbFactor = 1e-6;
// Special version of findCell that generates a cell guaranteed to be
// compatible with tracking.
static label findCell(const Cloud<passiveParticle>& cloud, const point& pt)
{
label cellI = -1;
label tetFaceI = -1;
label tetPtI = -1;
const polyMesh& mesh = cloud.pMesh();
mesh.findCellFacePt(pt, cellI, tetFaceI, tetPtI);
if (cellI >= 0)
{
return cellI;
}
else
{
// See if particle on face by finding nearest face and shifting
// particle.
meshSearch meshSearcher
(
mesh,
polyMesh::FACEPLANES // no decomposition needed
);
label faceI = meshSearcher.findNearestBoundaryFace(pt);
if (faceI >= 0)
{
const point& cc = mesh.cellCentres()[mesh.faceOwner()[faceI]];
const point perturbPt = (1-perturbFactor)*pt+perturbFactor*cc;
mesh.findCellFacePt(perturbPt, cellI, tetFaceI, tetPtI);
return cellI;
}
}
return -1;
}
void mapLagrangian(const meshToMesh& interp)
{
// Determine which particles are in meshTarget
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const polyMesh& meshSource = interp.srcRegion();
const polyMesh& meshTarget = interp.tgtRegion();
const labelListList& sourceToTarget = interp.srcToTgtCellAddr();
const pointField& targetCc = meshTarget.cellCentres();
fileNameList cloudDirs
(
readDir
(
meshSource.time().timePath()/cloud::prefix,
fileName::DIRECTORY
)
);
forAll(cloudDirs, cloudI)
{
// Search for list of lagrangian objects for this time
IOobjectList objects
(
meshSource,
meshSource.time().timeName(),
cloud::prefix/cloudDirs[cloudI]
);
IOobject* positionsPtr = objects.lookup(word("positions"));
if (positionsPtr)
{
Info<< nl << " processing cloud " << cloudDirs[cloudI] << endl;
// Read positions & cell
passiveParticleCloud sourceParcels
(
meshSource,
cloudDirs[cloudI],
false
);
Info<< " read " << sourceParcels.size()
<< " parcels from source mesh." << endl;
// Construct empty target cloud
passiveParticleCloud targetParcels
(
meshTarget,
cloudDirs[cloudI],
IDLList<passiveParticle>()
);
particle::TrackingData<passiveParticleCloud> td(targetParcels);
label sourceParticleI = 0;
// Indices of source particles that get added to targetParcels
DynamicList<label> addParticles(sourceParcels.size());
// Unmapped particles
labelHashSet unmappedSource(sourceParcels.size());
// Initial: track from fine-mesh cell centre to particle position
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This requires there to be no boundary in the way.
forAllConstIter(Cloud<passiveParticle>, sourceParcels, iter)
{
bool foundCell = false;
// Assume that cell from read parcel is the correct one...
if (iter().cell() >= 0)
{
const labelList& targetCells =
sourceToTarget[iter().cell()];
// Particle probably in one of the targetcells. Try
// all by tracking from their cell centre to the parcel
// position.
forAll(targetCells, i)
{
// Track from its cellcentre to position to make sure.
autoPtr<passiveParticle> newPtr
(
new passiveParticle
(
meshTarget,
targetCc[targetCells[i]],
targetCells[i]
)
);
passiveParticle& newP = newPtr();
label faceI = newP.track(iter().position(), td);
if (faceI < 0 && newP.cell() >= 0)
{
// Hit position.
foundCell = true;
addParticles.append(sourceParticleI);
targetParcels.addParticle(newPtr.ptr());
break;
}
}
}
if (!foundCell)
{
// Store for closer analysis
unmappedSource.insert(sourceParticleI);
}
sourceParticleI++;
}
Info<< " after meshToMesh addressing found "
<< targetParcels.size()
<< " parcels in target mesh." << endl;
// Do closer inspection for unmapped particles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (unmappedSource.size())
{
sourceParticleI = 0;
forAllIter(Cloud<passiveParticle>, sourceParcels, iter)
{
if (unmappedSource.found(sourceParticleI))
{
label targetCell =
findCell(targetParcels, iter().position());
if (targetCell >= 0)
{
unmappedSource.erase(sourceParticleI);
addParticles.append(sourceParticleI);
iter().cell() = targetCell;
targetParcels.addParticle
(
sourceParcels.remove(&iter())
);
}
}
sourceParticleI++;
}
}
addParticles.shrink();
Info<< " after additional mesh searching found "
<< targetParcels.size() << " parcels in target mesh." << endl;
if (addParticles.size())
{
IOPosition<passiveParticleCloud>(targetParcels).write();
// addParticles now contains the indices of the sourceMesh
// particles that were appended to the target mesh.
// Map lagrangian fields
// ~~~~~~~~~~~~~~~~~~~~~
MapLagrangianFields<label>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<scalar>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<vector>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<sphericalTensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<symmTensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
MapLagrangianFields<tensor>
(
cloudDirs[cloudI],
objects,
meshTarget,
addParticles
);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,56 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
InNamespace
Foam
Description
Maps lagrangian positions and fields
SourceFiles
mapLagrangian.C
\*---------------------------------------------------------------------------*/
#ifndef mapLagrangian_H
#define mapLagrangian_H
#include "meshToMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
//- Maps lagrangian positions and fields
void mapLagrangian(const meshToMesh& interp);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,33 @@
{
instantList sourceTimes = runTimeSource.times();
label sourceTimeIndex = runTimeSource.timeIndex();
if (args.optionFound("sourceTime"))
{
if (args["sourceTime"] == "latestTime")
{
sourceTimeIndex = sourceTimes.size() - 1;
}
else
{
sourceTimeIndex = Time::findClosestTimeIndex
(
sourceTimes,
args.optionRead<scalar>("sourceTime")
);
}
}
else
{
sourceTimeIndex = Time::findClosestTimeIndex
(
sourceTimes,
runTimeTarget.time().value()
);
}
runTimeSource.setTime(sourceTimes[sourceTimeIndex], sourceTimeIndex);
Info<< "\nSource time: " << runTimeSource.value()
<< "\nTarget time: " << runTimeTarget.value()
<< endl;
}

View File

@ -0,0 +1,3 @@
mdInitialise.C
EXE = $(FOAM_APPBIN)/mdInitialise

View File

@ -0,0 +1,18 @@
EXE_INC = \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/lagrangian/molecularDynamics/molecule/lnInclude \
-I$(LIB_SRC)/lagrangian/molecularDynamics/potential/lnInclude \
-I$(LIB_SRC)/lagrangian/molecularDynamics/molecularMeasurements/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lmeshTools \
-ldynamicMesh \
-lfiniteVolume \
-llagrangian \
-lmolecule \
-lpotential \
-lmolecularMeasurements

View File

@ -0,0 +1,97 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
Initialises fields for a molecular dynamics (MD) simulation.
\*---------------------------------------------------------------------------*/
#include "md.H"
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
IOdictionary mdInitialiseDict
(
IOobject
(
"mdInitialiseDict",
runTime.system(),
runTime,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
IOdictionary idListDict
(
IOobject
(
"idList",
mesh.time().constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
)
);
potential pot(mesh, mdInitialiseDict, idListDict);
moleculeCloud molecules(mesh, pot, mdInitialiseDict);
label totalMolecules = molecules.size();
if (Pstream::parRun())
{
reduce(totalMolecules, sumOp<label>());
}
Info<< nl << "Total number of molecules added: " << totalMolecules
<< nl << endl;
IOstream::defaultPrecision(15);
if (!mesh.write())
{
FatalErrorIn(args.executable())
<< "Failed writing moleculeCloud."
<< nl << exit(FatalError);
}
Info<< nl << "ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
setFields.C
EXE = $(FOAM_APPBIN)/setFields

View File

@ -0,0 +1,8 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgenericPatchFields \
-lmeshTools

View File

@ -0,0 +1,485 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
Set values on a selected set of cells/patchfaces through a dictionary.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "fvMesh.H"
#include "topoSetSource.H"
#include "cellSet.H"
#include "faceSet.H"
#include "volFields.H"
using namespace Foam;
template<class Type>
bool setCellFieldType
(
const word& fieldTypeDesc,
const fvMesh& mesh,
const labelList& selectedCells,
Istream& fieldValueStream
)
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
if (fieldTypeDesc != fieldType::typeName + "Value")
{
return false;
}
word fieldName(fieldValueStream);
// Check the current time directory
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ
);
// Check the "constant" directory
if (!fieldHeader.headerOk())
{
fieldHeader = IOobject
(
fieldName,
mesh.time().constant(),
mesh,
IOobject::MUST_READ
);
}
// Check field exists
if (fieldHeader.headerOk())
{
Info<< " Setting internal values of "
<< fieldHeader.headerClassName()
<< " " << fieldName << endl;
fieldType field(fieldHeader, mesh);
const Type& value = pTraits<Type>(fieldValueStream);
if (selectedCells.size() == field.size())
{
field.internalField() = value;
}
else
{
forAll(selectedCells, celli)
{
field[selectedCells[celli]] = value;
}
}
forAll(field.boundaryField(), patchi)
{
field.boundaryField()[patchi] =
field.boundaryField()[patchi].patchInternalField();
}
if (!field.write())
{
FatalErrorIn
(
"void setCellFieldType"
"(const fvMesh& mesh, const labelList& selectedCells,"
"Istream& fieldValueStream)"
) << "Failed writing field " << fieldName << endl;
}
}
else
{
WarningIn
(
"void setCellFieldType"
"(const fvMesh& mesh, const labelList& selectedCells,"
"Istream& fieldValueStream)"
) << "Field " << fieldName << " not found" << endl;
// Consume value
(void)pTraits<Type>(fieldValueStream);
}
return true;
}
class setCellField
{
public:
setCellField()
{}
autoPtr<setCellField> clone() const
{
return autoPtr<setCellField>(new setCellField());
}
class iNew
{
const fvMesh& mesh_;
const labelList& selectedCells_;
public:
iNew(const fvMesh& mesh, const labelList& selectedCells)
:
mesh_(mesh),
selectedCells_(selectedCells)
{}
autoPtr<setCellField> operator()(Istream& fieldValues) const
{
word fieldType(fieldValues);
if
(
!(
setCellFieldType<scalar>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<vector>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<sphericalTensor>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<symmTensor>
(fieldType, mesh_, selectedCells_, fieldValues)
|| setCellFieldType<tensor>
(fieldType, mesh_, selectedCells_, fieldValues)
)
)
{
WarningIn("setCellField::iNew::operator()(Istream& is)")
<< "field type " << fieldType << " not currently supported"
<< endl;
}
return autoPtr<setCellField>(new setCellField());
}
};
};
template<class Type>
bool setFaceFieldType
(
const word& fieldTypeDesc,
const fvMesh& mesh,
const labelList& selectedFaces,
Istream& fieldValueStream
)
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
if (fieldTypeDesc != fieldType::typeName + "Value")
{
return false;
}
word fieldName(fieldValueStream);
// Check the current time directory
IOobject fieldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ
);
// Check the "constant" directory
if (!fieldHeader.headerOk())
{
fieldHeader = IOobject
(
fieldName,
mesh.time().constant(),
mesh,
IOobject::MUST_READ
);
}
// Check field exists
if (fieldHeader.headerOk())
{
Info<< " Setting patchField values of "
<< fieldHeader.headerClassName()
<< " " << fieldName << endl;
fieldType field(fieldHeader, mesh);
const Type& value = pTraits<Type>(fieldValueStream);
// Create flat list of selected faces and their value.
Field<Type> allBoundaryValues(mesh.nFaces()-mesh.nInternalFaces());
forAll(field.boundaryField(), patchi)
{
SubField<Type>
(
allBoundaryValues,
field.boundaryField()[patchi].size(),
field.boundaryField()[patchi].patch().start()
- mesh.nInternalFaces()
).assign(field.boundaryField()[patchi]);
}
// Override
bool hasWarned = false;
labelList nChanged
(
returnReduce(field.boundaryField().size(), maxOp<label>()),
0
);
forAll(selectedFaces, i)
{
label facei = selectedFaces[i];
if (mesh.isInternalFace(facei))
{
if (!hasWarned)
{
hasWarned = true;
WarningIn("setFaceFieldType(..)")
<< "Ignoring internal face " << facei
<< ". Suppressing further warnings." << endl;
}
}
else
{
label bFaceI = facei-mesh.nInternalFaces();
allBoundaryValues[bFaceI] = value;
nChanged[mesh.boundaryMesh().patchID()[bFaceI]]++;
}
}
Pstream::listCombineGather(nChanged, plusEqOp<label>());
Pstream::listCombineScatter(nChanged);
// Reassign.
forAll(field.boundaryField(), patchi)
{
if (nChanged[patchi] > 0)
{
Info<< " On patch "
<< field.boundaryField()[patchi].patch().name()
<< " set " << nChanged[patchi] << " values" << endl;
field.boundaryField()[patchi] == SubField<Type>
(
allBoundaryValues,
field.boundaryField()[patchi].size(),
field.boundaryField()[patchi].patch().start()
- mesh.nInternalFaces()
);
}
}
if (!field.write())
{
FatalErrorIn
(
"void setFaceFieldType"
"(const fvMesh& mesh, const labelList& selectedFaces,"
"Istream& fieldValueStream)"
) << "Failed writing field " << field.name() << exit(FatalError);
}
}
else
{
WarningIn
(
"void setFaceFieldType"
"(const fvMesh& mesh, const labelList& selectedFaces,"
"Istream& fieldValueStream)"
) << "Field " << fieldName << " not found" << endl;
// Consume value
(void)pTraits<Type>(fieldValueStream);
}
return true;
}
class setFaceField
{
public:
setFaceField()
{}
autoPtr<setFaceField> clone() const
{
return autoPtr<setFaceField>(new setFaceField());
}
class iNew
{
const fvMesh& mesh_;
const labelList& selectedFaces_;
public:
iNew(const fvMesh& mesh, const labelList& selectedFaces)
:
mesh_(mesh),
selectedFaces_(selectedFaces)
{}
autoPtr<setFaceField> operator()(Istream& fieldValues) const
{
word fieldType(fieldValues);
if
(
!(
setFaceFieldType<scalar>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<vector>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<sphericalTensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<symmTensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
|| setFaceFieldType<tensor>
(fieldType, mesh_, selectedFaces_, fieldValues)
)
)
{
WarningIn("setFaceField::iNew::operator()(Istream& is)")
<< "field type " << fieldType << " not currently supported"
<< endl;
}
return autoPtr<setFaceField>(new setFaceField());
}
};
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
Info<< "Reading setFieldsDict\n" << endl;
IOdictionary setFieldsDict
(
IOobject
(
"setFieldsDict",
runTime.system(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
if (setFieldsDict.found("defaultFieldValues"))
{
Info<< "Setting field default values" << endl;
PtrList<setCellField> defaultFieldValues
(
setFieldsDict.lookup("defaultFieldValues"),
setCellField::iNew(mesh, labelList(mesh.nCells()))
);
Info<< endl;
}
Info<< "Setting field region values" << endl;
PtrList<entry> regions(setFieldsDict.lookup("regions"));
forAll(regions, regionI)
{
const entry& region = regions[regionI];
autoPtr<topoSetSource> source =
topoSetSource::New(region.keyword(), mesh, region.dict());
if (source().setType() == topoSetSource::CELLSETSOURCE)
{
cellSet selectedCellSet
(
mesh,
"cellSet",
mesh.nCells()/10+1 // Reasonable size estimate.
);
source->applyToSet
(
topoSetSource::NEW,
selectedCellSet
);
PtrList<setCellField> fieldValues
(
region.dict().lookup("fieldValues"),
setCellField::iNew(mesh, selectedCellSet.toc())
);
}
else if (source().setType() == topoSetSource::FACESETSOURCE)
{
faceSet selectedFaceSet
(
mesh,
"faceSet",
(mesh.nFaces()-mesh.nInternalFaces())/10+1
);
source->applyToSet
(
topoSetSource::NEW,
selectedFaceSet
);
PtrList<setFaceField> fieldValues
(
region.dict().lookup("fieldValues"),
setFaceField::iNew(mesh, selectedFaceSet.toc())
);
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,49 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object setFieldsDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
defaultFieldValues
(
volScalarFieldValue alpha1 0
volVectorFieldValue U (0 0 0)
);
regions
(
// Set cell values
// (does zerogradient on boundaries)
boxToCell
{
box (0 0 -1) (0.1461 0.292 1);
fieldValues
(
volScalarFieldValue alpha1 1
);
}
// Set patch values (using ==)
boxToFace
{
box (0 0 -1) (0.1461 0.292 1);
fieldValues
(
volScalarFieldValue alpha1 1
);
}
);
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
viewFactorsGen.C
EXE = $(FOAM_APPBIN)/viewFactorsGen

View File

@ -0,0 +1,15 @@
EXE_INC = \
-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/parallel/distributed/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/OpenFOAM/lnInclude
EXE_LIBS = \
-lmeshTools \
-lfiniteVolume \
-lOpenFOAM \
-lmeshTools \
-ltriSurface \
-ldistributed \
-lradiationModels

View File

@ -0,0 +1,69 @@
Random rndGen(653213);
// Determine mesh bounding boxes:
List<treeBoundBox> meshBb
(
1,
treeBoundBox
(
boundBox(coarseMesh.points(), false)
).extend(rndGen, 1e-3)
);
// Dummy bounds dictionary
dictionary dict;
dict.add("bounds", meshBb);
dict.add
(
"distributionType",
distributedTriSurfaceMesh::distributionTypeNames_
[
distributedTriSurfaceMesh::FROZEN
]
);
dict.add("mergeDistance", SMALL);
labelHashSet includePatches;
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (!pp.coupled() && !isA<cyclicAMIPolyPatch>(pp))
{
includePatches.insert(patchI);
}
}
labelList triSurfaceToAgglom(5*nFineFaces);
const triSurface localSurface = triangulate
(
patches,
includePatches,
finalAgglom,
triSurfaceToAgglom,
globalNumbering,
coarsePatches
);
distributedTriSurfaceMesh surfacesMesh
(
IOobject
(
"wallSurface.stl",
runTime.constant(), // directory
"triSurface", // instance
runTime, // registry
IOobject::NO_READ,
IOobject::NO_WRITE
),
localSurface,
dict
);
triSurfaceToAgglom.resize(surfacesMesh.size());
//surfacesMesh.searchableSurface::write();
surfacesMesh.setField(triSurfaceToAgglom);

View File

@ -0,0 +1,176 @@
// All rays expressed as start face (local) index end end face (global)
// Pre-size by assuming a certain percentage is visible.
// Maximum lenght for dynamicList
const label maxDynListLength = 100000;
for (label procI = 0; procI < Pstream::nProcs(); procI++)
{
// Shoot rays from me to procI. Note that even if processor has
// 0 faces we still need to call findLine to keep calls synced.
DynamicField<point> start(coarseMesh.nFaces());
DynamicField<point> end(start.size());
DynamicList<label> startIndex(start.size());
DynamicList<label> endIndex(start.size());
DynamicList<label> startAgg(start.size());
DynamicList<label> endAgg(start.size());
const pointField& myFc = remoteCoarseCf[Pstream::myProcNo()];
const vectorField& myArea = remoteCoarseSf[Pstream::myProcNo()];
const labelField& myAgg = remoteCoarseAgg[Pstream::myProcNo()];
const pointField& remoteArea = remoteCoarseSf[procI];
const pointField& remoteFc = remoteCoarseCf[procI];
const labelField& remoteAgg = remoteCoarseAgg[procI];
label i = 0;
label j = 0;
do
{
for (; i < myFc.size(); i++)
{
const point& fc = myFc[i];
const vector& fA = myArea[i];
const label& fAgg = myAgg[i];
for (; j < remoteFc.size(); j++)//
{
if (procI != Pstream::myProcNo() || i != j)
{
const point& remFc = remoteFc[j];
const vector& remA = remoteArea[j];
const label& remAgg = remoteAgg[j];
const vector& d = remFc - fc;
if (((d & fA) < 0.) && ((d & remA) > 0))
{
start.append(fc + 0.001*d);
startIndex.append(i);
startAgg.append(globalNumbering.toGlobal(procI, fAgg));
end.append(fc + 0.999*d);
label globalI = globalNumbering.toGlobal(procI, j);
endIndex.append(globalI);
endAgg.append(globalNumbering.toGlobal(procI, remAgg));
if (startIndex.size() > maxDynListLength)
{
FatalErrorIn
(
"shootRays"
) << "Dynamic list need from capacity."
<< "Actual size maxDynListLength : "
<< maxDynListLength
<< abort(FatalError);
}
}
}
}
if (j == remoteFc.size())
{
j = 0;
}
}
}while (returnReduce(i < myFc.size(), orOp<bool>()));
List<pointIndexHit> hitInfo(startIndex.size());
surfacesMesh.findLine(start, end, hitInfo);
// Return hit global agglo index
labelList aggHitIndex;
surfacesMesh.getField(hitInfo, aggHitIndex);
DynamicList<label> dRayIs;
// Collect the rays which has not abstacle in bettween in rayStartFace
// and rayEndFace. If the ray hit itself get stored in dRayIs
forAll (hitInfo, rayI)
{
if (!hitInfo[rayI].hit())
{
rayStartFace.append(startIndex[rayI]);
rayEndFace.append(endIndex[rayI]);
}
else if (aggHitIndex[rayI] == startAgg[rayI])
{
dRayIs.append(rayI);
}
}
start.clear();
// Continue rays which hit themself. If they hit the target
// agglomeration are added to rayStartFace and rayEndFace
bool firstLoop = true;
DynamicField<point> startHitItself;
DynamicField<point> endHitItself;
label iter = 0;
do
{
labelField rayIs;
rayIs.transfer(dRayIs);
dRayIs.clear();
forAll (rayIs, rayI)
{
const label rayID = rayIs[rayI];
label hitIndex = -1;
if (firstLoop)
{
hitIndex = rayIs[rayI];
}
else
{
hitIndex = rayI;
}
if (hitInfo[hitIndex].hit())
{
if (aggHitIndex[hitIndex] == startAgg[rayID])
{
const vector& endP = end[rayID];
const vector& startP = hitInfo[hitIndex].hitPoint();
const vector& d = endP - startP;
startHitItself.append(startP + 0.01*d);
endHitItself.append(startP + 1.01*d);
dRayIs.append(rayID);
}
else if (aggHitIndex[hitIndex] == endAgg[rayID])
{
rayStartFace.append(startIndex[rayID]);
rayEndFace.append(endIndex[rayID]);
}
}
}
hitInfo.clear();
hitInfo.resize(dRayIs.size());
surfacesMesh.findLine(startHitItself, endHitItself, hitInfo);
surfacesMesh.getField(hitInfo, aggHitIndex);
endHitItself.clear();
startHitItself.clear();
firstLoop = false;
iter ++;
}while (returnReduce(hitInfo.size(), orOp<bool>()) > 0 && iter < 10);
startIndex.clear();
end.clear();
endIndex.clear();
startAgg.clear();
endAgg.clear();
}

View File

@ -0,0 +1,960 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
viewFactorsGen
Description
View factors are calculated based on a face agglomeration array
(finalAgglom generated by faceAgglomerate utility).
Each view factor between the agglomerated faces i and j (Fij) is calculated
using a double integral of the sub-areas composing the agglomaration.
The patches involved in the view factor calculation are taken from the Qr
volScalarField (radiative flux) when is greyDiffusiveRadiationViewFactor
otherwise they are not included.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "fvMesh.H"
#include "Time.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "distributedTriSurfaceMesh.H"
#include "cyclicAMIPolyPatch.H"
#include "triSurfaceTools.H"
#include "mapDistribute.H"
#include "OFstream.H"
#include "meshTools.H"
#include "plane.H"
#include "uindirectPrimitivePatch.H"
#include "DynamicField.H"
#include "IFstream.H"
#include "unitConversion.H"
#include "mathematicalConstants.H"
#include "scalarMatrices.H"
#include "CompactListList.H"
#include "labelIOList.H"
#include "labelListIOList.H"
#include "scalarListIOList.H"
#include "singleCellFvMesh.H"
#include "IOdictionary.H"
#include "fixedValueFvPatchFields.H"
using namespace Foam;
triSurface triangulate
(
const polyBoundaryMesh& bMesh,
const labelHashSet& includePatches,
const labelListIOList& finalAgglom,
labelList& triSurfaceToAgglom,
const globalIndex& globalNumbering,
const polyBoundaryMesh& coarsePatches
)
{
const polyMesh& mesh = bMesh.mesh();
// Storage for surfaceMesh. Size estimate.
DynamicList<labelledTri> triangles
(
mesh.nFaces() - mesh.nInternalFaces()
);
label newPatchI = 0;
label localTriFaceI = 0;
forAllConstIter(labelHashSet, includePatches, iter)
{
const label patchI = iter.key();
const polyPatch& patch = bMesh[patchI];
const pointField& points = patch.points();
label nTriTotal = 0;
forAll(patch, patchFaceI)
{
const face& f = patch[patchFaceI];
faceList triFaces(f.nTriangles(points));
label nTri = 0;
f.triangles(points, nTri, triFaces);
forAll(triFaces, triFaceI)
{
const face& f = triFaces[triFaceI];
triangles.append(labelledTri(f[0], f[1], f[2], newPatchI));
nTriTotal++;
triSurfaceToAgglom[localTriFaceI++] = globalNumbering.toGlobal
(
Pstream::myProcNo(),
finalAgglom[patchI][patchFaceI]
+ coarsePatches[patchI].start()
);
}
}
newPatchI++;
}
triSurfaceToAgglom.resize(localTriFaceI-1);
triangles.shrink();
// Create globally numbered tri surface
triSurface rawSurface(triangles, mesh.points());
// Create locally numbered tri surface
triSurface surface
(
rawSurface.localFaces(),
rawSurface.localPoints()
);
// Add patch names to surface
surface.patches().setSize(newPatchI);
newPatchI = 0;
forAllConstIter(labelHashSet, includePatches, iter)
{
const label patchI = iter.key();
const polyPatch& patch = bMesh[patchI];
surface.patches()[newPatchI].index() = patchI;
surface.patches()[newPatchI].name() = patch.name();
surface.patches()[newPatchI].geometricType() = patch.type();
newPatchI++;
}
return surface;
}
void writeRays
(
const fileName& fName,
const pointField& compactCf,
const pointField& myFc,
const labelListList& visibleFaceFaces
)
{
OFstream str(fName);
label vertI = 0;
Pout<< "Dumping rays to " << str.name() << endl;
forAll(myFc, faceI)
{
const labelList visFaces = visibleFaceFaces[faceI];
forAll(visFaces, faceRemote)
{
label compactI = visFaces[faceRemote];
const point& remoteFc = compactCf[compactI];
meshTools::writeOBJ(str, myFc[faceI]);
vertI++;
meshTools::writeOBJ(str, remoteFc);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}
}
string cmd("objToVTK " + fName + " " + fName.lessExt() + ".vtk");
Pout<< "cmd:" << cmd << endl;
system(cmd);
}
scalar calculateViewFactorFij
(
const vector& i,
const vector& j,
const vector& dAi,
const vector& dAj
)
{
vector r = i - j;
scalar rMag = mag(r);
scalar dAiMag = mag(dAi);
scalar dAjMag = mag(dAj);
vector ni = dAi/dAiMag;
vector nj = dAj/dAjMag;
scalar cosThetaJ = mag(nj & r)/rMag;
scalar cosThetaI = mag(ni & r)/rMag;
return
(
(cosThetaI*cosThetaJ*dAjMag*dAiMag)
/(sqr(rMag)*constant::mathematical::pi)
);
}
void insertMatrixElements
(
const globalIndex& globalNumbering,
const label fromProcI,
const labelListList& globalFaceFaces,
const scalarListList& viewFactors,
scalarSquareMatrix& matrix
)
{
forAll(viewFactors, faceI)
{
const scalarList& vf = viewFactors[faceI];
const labelList& globalFaces = globalFaceFaces[faceI];
label globalI = globalNumbering.toGlobal(fromProcI, faceI);
forAll(globalFaces, i)
{
matrix[globalI][globalFaces[i]] = vf[i];
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
// Read view factor dictionary
IOdictionary viewFactorDict
(
IOobject
(
"viewFactorsDict",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
const bool writeViewFactors =
viewFactorDict.lookupOrDefault<bool>("writeViewFactorMatrix", false);
const bool dumpRays =
viewFactorDict.lookupOrDefault<bool>("dumpRays", false);
const label debug = viewFactorDict.lookupOrDefault<label>("debug", 0);
volScalarField Qr
(
IOobject
(
"Qr",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
// Read agglomeration map
labelListIOList finalAgglom
(
IOobject
(
"finalAgglom",
mesh.facesInstance(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
);
// Create the coarse mesh using agglomeration
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (debug)
{
Pout << "\nCreating single cell mesh..." << endl;
}
singleCellFvMesh coarseMesh
(
IOobject
(
mesh.name(),
runTime.timeName(),
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
finalAgglom
);
if (debug)
{
Pout << "\nCreated single cell mesh..." << endl;
}
// Calculate total number of fine and coarse faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
label nCoarseFaces = 0; //total number of coarse faces
label nFineFaces = 0; //total number of fine faces
const polyBoundaryMesh& patches = mesh.boundaryMesh();
const polyBoundaryMesh& coarsePatches = coarseMesh.boundaryMesh();
labelList viewFactorsPatches(patches.size());
const volScalarField::GeometricBoundaryField& Qrb = Qr.boundaryField();
label count = 0;
forAll(Qrb, patchI)
{
const polyPatch& pp = patches[patchI];
const fvPatchScalarField& QrpI = Qrb[patchI];
if ((isA<fixedValueFvPatchScalarField>(QrpI)) && (pp.size() > 0))
{
viewFactorsPatches[count] = QrpI.patch().index();
nCoarseFaces += coarsePatches[patchI].size();
nFineFaces += patches[patchI].size();
count ++;
}
}
viewFactorsPatches.resize(count--);
// total number of coarse faces
label totalNCoarseFaces = nCoarseFaces;
reduce(totalNCoarseFaces, sumOp<label>());
if (Pstream::master())
{
Info << "\nTotal number of coarse faces: "<< totalNCoarseFaces << endl;
}
if (Pstream::master() && debug)
{
Pout << "\nView factor patches included in the calculation : "
<< viewFactorsPatches << endl;
}
// Collect local Cf and Sf on coarse mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList<point> localCoarseCf(nCoarseFaces);
DynamicList<point> localCoarseSf(nCoarseFaces);
DynamicList<label> localAgg(nCoarseFaces);
forAll (viewFactorsPatches, i)
{
const label patchID = viewFactorsPatches[i];
const polyPatch& pp = patches[patchID];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
const pointField& coarseCf = coarseMesh.Cf().boundaryField()[patchID];
const pointField& coarseSf = coarseMesh.Sf().boundaryField()[patchID];
labelHashSet includePatches;
includePatches.insert(patchID);
forAll(coarseCf, faceI)
{
point cf = coarseCf[faceI];
const label coarseFaceI = coarsePatchFace[faceI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
const label agglomI =
agglom[fineFaces[0]] + coarsePatches[patchID].start();
// Construct single face
uindirectPrimitivePatch upp
(
UIndirectList<face>(pp, fineFaces),
pp.points()
);
List<point> availablePoints
(
upp.faceCentres().size()
+ upp.localPoints().size()
);
SubList<point>
(
availablePoints,
upp.faceCentres().size()
).assign(upp.faceCentres());
SubList<point>
(
availablePoints,
upp.localPoints().size(),
upp.faceCentres().size()
).assign(upp.localPoints());
point cfo = cf;
scalar dist = GREAT;
forAll(availablePoints, iPoint)
{
point cfFine = availablePoints[iPoint];
if (mag(cfFine-cfo) < dist)
{
dist = mag(cfFine-cfo);
cf = cfFine;
}
}
point sf = coarseSf[faceI];
localCoarseCf.append(cf);
localCoarseSf.append(sf);
localAgg.append(agglomI);
}
}
// Distribute local coarse Cf and Sf for shooting rays
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List<pointField> remoteCoarseCf(Pstream::nProcs());
List<pointField> remoteCoarseSf(Pstream::nProcs());
List<labelField> remoteCoarseAgg(Pstream::nProcs());
remoteCoarseCf[Pstream::myProcNo()] = localCoarseCf;
remoteCoarseSf[Pstream::myProcNo()] = localCoarseSf;
remoteCoarseAgg[Pstream::myProcNo()] = localAgg;
Pstream::gatherList(remoteCoarseCf);
Pstream::scatterList(remoteCoarseCf);
Pstream::gatherList(remoteCoarseSf);
Pstream::scatterList(remoteCoarseSf);
Pstream::gatherList(remoteCoarseAgg);
Pstream::scatterList(remoteCoarseAgg);
globalIndex globalNumbering(nCoarseFaces);
// Set up searching engine for obstacles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "searchingEngine.H"
// Determine rays between coarse face centres
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList<label> rayStartFace(nCoarseFaces + 0.01*nCoarseFaces);
DynamicList<label> rayEndFace(rayStartFace.size());
// Return rayStartFace in local index andrayEndFace in global index
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "shootRays.H"
// Calculate number of visible faces from local index
labelList nVisibleFaceFaces(nCoarseFaces, 0);
forAll(rayStartFace, i)
{
nVisibleFaceFaces[rayStartFace[i]]++;
}
labelListList visibleFaceFaces(nCoarseFaces);
label nViewFactors = 0;
forAll(nVisibleFaceFaces, faceI)
{
visibleFaceFaces[faceI].setSize(nVisibleFaceFaces[faceI]);
nViewFactors += nVisibleFaceFaces[faceI];
}
// - Construct compact numbering
// - return map from remote to compact indices
// (per processor (!= myProcNo) a map from remote index to compact index)
// - construct distribute map
// - renumber rayEndFace into compact addressing
List<Map<label> > compactMap(Pstream::nProcs());
mapDistribute map(globalNumbering, rayEndFace, compactMap);
labelListIOList IOsubMap
(
IOobject
(
"subMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.subMap()
);
IOsubMap.write();
labelListIOList IOconstructMap
(
IOobject
(
"constructMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.constructMap()
);
IOconstructMap.write();
IOList<label> consMapDim
(
IOobject
(
"constructMapDim",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
List<label>(1, map.constructSize())
);
consMapDim.write();
// visibleFaceFaces has:
// (local face, local viewed face) = compact viewed face
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nVisibleFaceFaces = 0;
forAll(rayStartFace, i)
{
label faceI = rayStartFace[i];
label compactI = rayEndFace[i];
visibleFaceFaces[faceI][nVisibleFaceFaces[faceI]++] = compactI;
}
// Construct data in compact addressing
// I need coarse Sf (Ai), fine Sf (dAi) and fine Cf(r) to calculate Fij
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pointField compactCoarseCf(map.constructSize(), pTraits<vector>::zero);
pointField compactCoarseSf(map.constructSize(), pTraits<vector>::zero);
List<List<point> > compactFineSf(map.constructSize());
List<List<point> > compactFineCf(map.constructSize());
DynamicList<label> compactPatchId(map.constructSize());
// Insert my coarse local values
SubList<point>(compactCoarseSf, nCoarseFaces).assign(localCoarseSf);
SubList<point>(compactCoarseCf, nCoarseFaces).assign(localCoarseCf);
// Insert my fine local values
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
compactPatchId.append(patchID);
List<point>& fineCf = compactFineCf[compactI];
List<point>& fineSf = compactFineSf[compactI++];
const label coarseFaceI = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
fineCf.setSize(fineFaces.size());
fineSf.setSize(fineFaces.size());
fineCf = UIndirectList<point>
(
mesh.Cf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
fineSf = UIndirectList<point>
(
mesh.Sf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
}
}
// Do all swapping
map.distribute(compactCoarseSf);
map.distribute(compactCoarseCf);
map.distribute(compactFineCf);
map.distribute(compactFineSf);
map.distribute(compactPatchId);
// Plot all rays between visible faces.
if (dumpRays)
{
writeRays
(
runTime.path()/"allVisibleFaces.obj",
compactCoarseCf,
remoteCoarseCf[Pstream::myProcNo()],
visibleFaceFaces
);
}
// Fill local view factor matrix
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
scalarListIOList F
(
IOobject
(
"F",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
nCoarseFaces
);
label totalPatches = coarsePatches.size();
reduce(totalPatches, maxOp<label>());
// Matrix sum in j(Fij) for each i (if enclosure sum = 1)
scalarSquareMatrix sumViewFactorPatch
(
totalPatches,
totalPatches,
0.0
);
scalarList patchArea(totalPatches, 0.0);
if (Pstream::master())
{
Info<< "\nCalculating view factors..." << endl;
}
if (mesh.nSolutionD() == 3)
{
forAll (localCoarseSf, coarseFaceI)
{
const List<point>& localFineSf = compactFineSf[coarseFaceI];
const vector Ai = sum(localFineSf);
const List<point>& localFineCf = compactFineCf[coarseFaceI];
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll(visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const List<point>& remoteFineSj = compactFineSf[compactJ];
const List<point>& remoteFineCj = compactFineCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
scalar Fij = 0;
forAll (localFineSf, i)
{
const vector& dAi = localFineSf[i];
const vector& dCi = localFineCf[i];
forAll (remoteFineSj, j)
{
const vector& dAj = remoteFineSj[j];
const vector& dCj = remoteFineCj[j];
scalar dIntFij = calculateViewFactorFij
(
dCi,
dCj,
dAi,
dAj
);
Fij += dIntFij;
}
}
F[coarseFaceI][visCoarseFaceI] = Fij/mag(Ai);
sumViewFactorPatch[fromPatchId][toPatchId] += Fij;
}
}
}
else if (mesh.nSolutionD() == 2)
{
const boundBox& box = mesh.bounds();
const Vector<label>& dirs = mesh.geometricD();
vector emptyDir = vector::zero;
forAll(dirs, i)
{
if (dirs[i] == -1)
{
emptyDir[i] = 1.0;
}
}
scalar wideBy2 = (box.span() & emptyDir)*2.0;
forAll(localCoarseSf, coarseFaceI)
{
const vector& Ai = localCoarseSf[coarseFaceI];
const vector& Ci = localCoarseCf[coarseFaceI];
vector Ain = Ai/mag(Ai);
vector R1i = Ci + (mag(Ai)/wideBy2)*(Ain ^ emptyDir);
vector R2i = Ci - (mag(Ai)/wideBy2)*(Ain ^ emptyDir) ;
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll (visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const vector& Aj = compactCoarseSf[compactJ];
const vector& Cj = compactCoarseCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
vector Ajn = Aj/mag(Aj);
vector R1j = Cj + (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
vector R2j = Cj - (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
scalar d1 = mag(R1i - R2j);
scalar d2 = mag(R2i - R1j);
scalar s1 = mag(R1i - R1j);
scalar s2 = mag(R2i - R2j);
scalar Fij = mag((d1 + d2) - (s1 + s2))/(4.0*mag(Ai)/wideBy2);
F[coarseFaceI][visCoarseFaceI] = Fij;
sumViewFactorPatch[fromPatchId][toPatchId] += Fij*mag(Ai);
}
}
}
if (Pstream::master())
{
Info << "Writing view factor matrix..." << endl;
}
// Write view factors matrix in listlist form
F.write();
reduce(sumViewFactorPatch, sumOp<scalarSquareMatrix>());
reduce(patchArea, sumOp<scalarList>());
if (Pstream::master() && debug)
{
forAll(viewFactorsPatches, i)
{
label patchI = viewFactorsPatches[i];
forAll(viewFactorsPatches, i)
{
label patchJ = viewFactorsPatches[i];
Info << "F" << patchI << patchJ << ": "
<< sumViewFactorPatch[patchI][patchJ]/patchArea[patchI]
<< endl;
}
}
}
if (writeViewFactors)
{
volScalarField viewFactorField
(
IOobject
(
"viewFactorField",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("viewFactorField", dimless, 0)
);
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace =
coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
const scalar Fij = sum(F[compactI]);
const label coarseFaceID = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceID];
forAll (fineFaces, fineId)
{
const label faceID = fineFaces[fineId];
viewFactorField.boundaryField()[patchID][faceID] = Fij;
}
compactI++;
}
}
viewFactorField.write();
}
// Invert compactMap (from processor+localface to compact) to go
// from compact to processor+localface (expressed as a globalIndex)
// globalIndex globalCoarFaceNum(coarseMesh.nFaces());
labelList compactToGlobal(map.constructSize());
// Local indices first (note: are not in compactMap)
for (label i = 0; i < globalNumbering.localSize(); i++)
{
compactToGlobal[i] = globalNumbering.toGlobal(i);
}
forAll(compactMap, procI)
{
const Map<label>& localToCompactMap = compactMap[procI];
forAllConstIter(Map<label>, localToCompactMap, iter)
{
compactToGlobal[iter()] = globalNumbering.toGlobal
(
procI,
iter.key()
);
}
}
if (Pstream::master())
{
scalarSquareMatrix Fmatrix(totalNCoarseFaces, totalNCoarseFaces, 0.0);
labelListList globalFaceFaces(visibleFaceFaces.size());
// Create globalFaceFaces needed to insert view factors
// in F to the global matrix Fmatrix
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
else
{
labelListList globalFaceFaces(visibleFaceFaces.size());
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,5 @@
#!/bin/sh
wclean libso tabulatedWallFunction
wclean

View File

@ -0,0 +1,8 @@
#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory
set -x
wmake libso tabulatedWallFunction
wmake
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,3 @@
wallFunctionTableApp.C
EXE = $(FOAM_APPBIN)/wallFunctionTable

View File

@ -0,0 +1,8 @@
EXE_INC = \
-I./tabulatedWallFunction/lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-ltabulatedWallFunctions \
-lfiniteVolume

View File

@ -0,0 +1,7 @@
tabulatedWallFunction/tabulatedWallFunction.C
tabulatedWallFunction/tabulatedWallFunctionNew.C
SpaldingsLaw/SpaldingsLaw.C
general/general.C
LIB = $(FOAM_LIBBIN)/libtabulatedWallFunctions

View File

@ -0,0 +1,9 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
-I$(LIB_SRC)/transportModels
LIB_LIBS = \
-lfiniteVolume

View File

@ -0,0 +1,196 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "SpaldingsLaw.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
defineTypeNameAndDebug(SpaldingsLaw, 0);
addToRunTimeSelectionTable
(
tabulatedWallFunction,
SpaldingsLaw,
dictionary
);
}
}
const Foam::label Foam::tabulatedWallFunctions::SpaldingsLaw::maxIters_ = 1000;
const Foam::scalar
Foam::tabulatedWallFunctions::SpaldingsLaw::tolerance_ = 1e-4;
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
void Foam::tabulatedWallFunctions::SpaldingsLaw::invertFunction()
{
// Initialise u+ and R
scalar Re = 0.0;
scalar uPlus = 1;
// Populate the table
forAll(invertedTable_, i)
{
if (invertedTable_.log10())
{
Re = pow(10, (i*invertedTable_.dx() + invertedTable_.x0()));
}
else
{
Re = i*invertedTable_.dx() + invertedTable_.x0();
}
// Use latest available u+ estimate
if (i > 0)
{
uPlus = invertedTable_[i-1];
}
// Newton iterations to determine u+
label iter = 0;
scalar error = GREAT;
do
{
scalar kUPlus = min(kappa_*uPlus, 50);
scalar A =
E_*sqr(uPlus)
+ uPlus
*(exp(kUPlus) - pow3(kUPlus)/6 - 0.5*sqr(kUPlus) - kUPlus - 1);
scalar f = - Re + A/E_;
scalar df =
(
2*E_*uPlus
+ exp(kUPlus)*(kUPlus + 1)
- 2/3*pow3(kUPlus)
- 1.5*sqr(kUPlus)
- 2*kUPlus
- 1
)/E_;
scalar uPlusNew = uPlus - f/(df + ROOTVSMALL);
error = mag((uPlus - uPlusNew)/uPlusNew);
uPlus = uPlusNew;
} while (error > tolerance_ && ++iter < maxIters_);
if (iter == maxIters_)
{
WarningIn("SpaldingsLaw::invertFunction()")
<< "Newton iterations not converged:" << nl
<< " iters = " << iter << ", error = " << error << endl;
}
// Set new values - constrain u+ >= 0
invertedTable_[i] = max(0, uPlus);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::SpaldingsLaw::SpaldingsLaw
(
const dictionary& dict,
const polyMesh& mesh
)
:
tabulatedWallFunction(dict, mesh, typeName),
kappa_(readScalar(coeffDict_.lookup("kappa"))),
E_(readScalar(coeffDict_.lookup("E")))
{
invertFunction();
if (debug)
{
writeData(Info);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::SpaldingsLaw::~SpaldingsLaw()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::scalar Foam::tabulatedWallFunctions::SpaldingsLaw::yPlus
(
const scalar uPlus
) const
{
scalar kUPlus = min(kappa_*uPlus, 50);
return
uPlus
+ 1/E_*(exp(kUPlus) - pow3(kUPlus)/6 - 0.5*sqr(kUPlus) - kUPlus - 1);
}
Foam::scalar Foam::tabulatedWallFunctions::SpaldingsLaw::Re
(
const scalar uPlus
) const
{
return uPlus*yPlus(uPlus);
}
void Foam::tabulatedWallFunctions::SpaldingsLaw::writeData(Ostream& os) const
{
if (invertedTable_.log10())
{
os << "log10(Re), y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = ::log10(this->Re(uPlus));
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
else
{
os << "Re, y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = this->Re(uPlus);
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
}
// ************************************************************************* //

View File

@ -0,0 +1,139 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::tabulatedWallFunctions::SpaldingsLaw
Description
Computes U+ as a function of Reynolds number by inverting Spaldings law.
Example dictionary specification:
tabulatedWallFunction SpaldingsLaw;
// Output table info
tableName uPlusWallFunctionData; // Output table name
log10 yes; // Rey interpreted as log10(Rey)
dx 0.2; // Interval log10(Rey)
x0 -3; // Minimum log10(Rey)
xMax 7; // Maximum log10(Rey)
SpaldingsLawCoeffs
{
kappa 0.41; // Von Karman constant
E 9.8; // Law-of-the-wall E coefficient
}
SourceFiles
SpaldingsLaw.C
\*---------------------------------------------------------------------------*/
#ifndef SpaldingsLaw_H
#define SpaldingsLaw_H
#include "tabulatedWallFunction.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
/*---------------------------------------------------------------------------*\
Class SpaldingsLaw Declaration
\*---------------------------------------------------------------------------*/
class SpaldingsLaw
:
public tabulatedWallFunction
{
protected:
// Protected data
//- Von Karman constant
scalar kappa_;
//- Law-of-the-wall E coefficient
scalar E_;
// Newton iteration solution properties
//- Maximum number of iterations
static const label maxIters_;
//- Tolerance
static const scalar tolerance_;
// Protected Member Functions
//- Invert the function
virtual void invertFunction();
public:
//- Run-time type information
TypeName("SpaldingsLaw");
// Constructors
SpaldingsLaw(const dictionary& dict, const polyMesh& mesh);
//- Destructor
virtual ~SpaldingsLaw();
// Member Functions
// Access
//- Return y+ as a function of u+
virtual scalar yPlus(const scalar uPlus) const;
//- Return Reynolds number as a function of u+
virtual scalar Re(const scalar uPlus) const;
// I-O
//- Write to Ostream
virtual void writeData(Ostream& os) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace tabulatedWallFunctions
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,256 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "general.H"
#include "addToRunTimeSelectionTable.H"
#include "Tuple2.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
defineTypeNameAndDebug(general, 0);
addToRunTimeSelectionTable
(
tabulatedWallFunction,
general,
dictionary
);
}
template<>
const char* Foam::NamedEnum
<
Foam::tabulatedWallFunctions::general::interpolationType,
1
>::names[] =
{
"linear"
};
}
const
Foam::NamedEnum<Foam::tabulatedWallFunctions::general::interpolationType, 1>
Foam::tabulatedWallFunctions::general::interpolationTypeNames_;
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
void Foam::tabulatedWallFunctions::general::invertTable()
{
scalarList Rey(uPlus_.size(), 0.0);
// Calculate Reynolds number
forAll(uPlus_, i)
{
Rey[i] = yPlus_[i]*uPlus_[i];
if (invertedTable_.log10())
{
Rey[i] = ::log10(max(ROOTVSMALL, Rey[i]));
}
}
// Populate the U+ vs Re table
forAll(invertedTable_, i)
{
scalar Re = i*invertedTable_.dx() + invertedTable_.x0();
invertedTable_[i] = max(0, interpolate(Re, Rey, uPlus_));
}
}
Foam::scalar Foam::tabulatedWallFunctions::general::interpolate
(
const scalar xi,
const scalarList& x,
const scalarList& fx
) const
{
switch (interpType_)
{
case itLinear:
{
if (xi <= x[0])
{
return fx[0];
}
else if (xi >= x.last())
{
return fx.last();
}
else
{
label i2 = 0;
while (x[i2] < xi)
{
i2++;
}
label i1 = i2 - 1;
return (xi - x[i1])/(x[i2] - x[i1])*(fx[i2] - fx[i1]) + fx[i1];
}
break;
}
default:
{
FatalErrorIn
(
"tabulatedWallFunctions::general::interpolate"
"("
"const scalar, "
"const scalarList&, "
"const scalarList&"
")"
) << "Unknown interpolation method" << nl
<< abort(FatalError);
}
}
return 0.0;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::general::general
(
const dictionary& dict,
const polyMesh& mesh
)
:
tabulatedWallFunction(dict, mesh, typeName),
interpType_(interpolationTypeNames_[coeffDict_.lookup("interpType")]),
yPlus_(),
uPlus_(),
log10YPlus_(coeffDict_.lookup("log10YPlus")),
log10UPlus_(coeffDict_.lookup("log10UPlus"))
{
List<Tuple2<scalar, scalar> > inputTable = coeffDict_.lookup("inputTable");
if (inputTable.size() < 2)
{
FatalErrorIn
(
"tabulatedWallFunctions::general::general"
"("
"const dictionary&, "
"const polyMesh&"
")"
) << "Input table must have at least 2 values" << nl
<< exit(FatalError);
}
yPlus_.setSize(inputTable.size());
uPlus_.setSize(inputTable.size());
forAll(inputTable, i)
{
if (log10YPlus_)
{
yPlus_[i] = pow(10, inputTable[i].first());
}
else
{
yPlus_[i] = inputTable[i].first();
}
if (log10UPlus_)
{
uPlus_[i] = pow(10, inputTable[i].second());
}
else
{
uPlus_[i] = inputTable[i].second();
}
}
invertTable();
if (debug)
{
writeData(Info);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::general::~general()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::scalar Foam::tabulatedWallFunctions::general::yPlus
(
const scalar uPlus
) const
{
return interpolate(uPlus, uPlus_, yPlus_);
}
Foam::scalar Foam::tabulatedWallFunctions::general::Re
(
const scalar uPlus
) const
{
return uPlus*yPlus(uPlus);
}
// * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * * //
void Foam::tabulatedWallFunctions::general::writeData(Ostream& os) const
{
if (invertedTable_.log10())
{
os << "log10(Re), y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = ::log10(this->Re(uPlus));
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
else
{
os << "Re, y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = this->Re(uPlus);
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
}
// ************************************************************************* //

View File

@ -0,0 +1,171 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::tabulatedWallFunctions::general
Description
Computes U+ as a function of Reynolds number by inverting table of
y+ vs U+
Example dictionary specification:
tabulatedWallFunction general;
// Output table info
tableName uPlusWallFunctionData; // Output table name
log10 yes; // Re interpreted as log10(Rey)
dx 0.2; // Interval log10(Rey)
x0 -3; // Minimum log10(Rey)
xMax 7; // Maximum log10(Rey)
generalCoeffs
{
interpType linear; // Interpolation method
log10YPlus true; // y+ values defined as log10(y+)
log10UPlus true; // U+ values defined as log10(y+)
inputTable
(
(yPlusValue0 uPlusValue0)
...
(yPlusValueN uPlusValueN)
);
}
SourceFiles
general.C
\*---------------------------------------------------------------------------*/
#ifndef general_H
#define general_H
#include "tabulatedWallFunction.H"
#include "NamedEnum.H"
#include "Switch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
/*---------------------------------------------------------------------------*\
Class general Declaration
\*---------------------------------------------------------------------------*/
class general
:
public tabulatedWallFunction
{
public:
// Public data types
//- Enumeration listing available interpolation types
enum interpolationType
{
itLinear
};
static const NamedEnum<interpolationType, 1> interpolationTypeNames_;
protected:
// Protected data
//- Type of interpolation to apply when inverting the data set
interpolationType interpType_;
//- Input y+ values
List<scalar> yPlus_;
//- Input U+ values
List<scalar> uPlus_;
//- Are y+ values entered as log10(y+)?
Switch log10YPlus_;
//- Are U+ values entered as log10(U+)?
Switch log10UPlus_;
// Protected Member Functions
//- Invert the table
virtual void invertTable();
//- Interpolate
virtual scalar interpolate
(
const scalar xi,
const scalarList& x,
const scalarList& fx
) const;
public:
//- Run-time type information
TypeName("general");
// Constructors
general(const dictionary& dict, const polyMesh& mesh);
//- Destructor
virtual ~general();
// Member Functions
// Access
//- Return y+ as a function of u+
virtual scalar yPlus(const scalar uPlus) const;
//- Return Reynolds number as a function of u+
virtual scalar Re(const scalar uPlus) const;
// I-O
//- Write to Ostream
virtual void writeData(Ostream& os) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace tabulatedWallFunctions
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,86 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tabulatedWallFunction.H"
#include "Time.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
defineTypeNameAndDebug(tabulatedWallFunction, 0);
defineRunTimeSelectionTable(tabulatedWallFunction, dictionary);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::tabulatedWallFunction::tabulatedWallFunction
(
const dictionary& dict,
const polyMesh& mesh,
const word& name
)
:
dict_(dict),
mesh_(mesh),
coeffDict_(dict.subDict(name + "Coeffs")),
invertedTableName_(dict.lookup("invertedTableName")),
invertedTable_(invertedTableName_, mesh_, dict, true)
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::tabulatedWallFunction::~tabulatedWallFunction()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::tabulatedWallFunctions::tabulatedWallFunction::write()
{
if (invertedTable_.log10())
{
invertedTable_.note() =
"U+ as a function of log10(Re) computed using " + type();
}
else
{
invertedTable_.note() =
"U+ as a function of Re computed using " + type();
}
Info<< "Writing inverted table to\n " << invertedTable_.objectPath()
<< endl;
invertedTable_.write();
}
// ************************************************************************* //

View File

@ -0,0 +1,147 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::tabulatedWallFunctions::tabulatedWallFunction
Description
Base class for models that generate tabulated wall function data.
SourceFiles
tabulatedWallFunction.C
\*---------------------------------------------------------------------------*/
#ifndef tabulatedWallFunction_H
#define tabulatedWallFunction_H
#include "dictionary.H"
#include "polyMesh.H"
#include "runTimeSelectionTables.H"
#include "Switch.H"
#include "uniformInterpolationTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
/*---------------------------------------------------------------------------*\
Class tabulatedWallFunction Declaration
\*---------------------------------------------------------------------------*/
class tabulatedWallFunction
{
protected:
// Proteced data
//- Main dictionary
const dictionary dict_;
//- Reference to the mesh database
const polyMesh& mesh_;
//- Coefficients dictionary
const dictionary coeffDict_;
//- Name of inverted table
word invertedTableName_;
//- Inverted table
uniformInterpolationTable<scalar> invertedTable_;
public:
//- Run-time type information
TypeName("tabulatedWallFunction");
//- Declare runtime constructor selection table
declareRunTimeSelectionTable
(
autoPtr,
tabulatedWallFunction,
dictionary,
(
const dictionary& dict,
const polyMesh& mesh
),
(dict, mesh)
);
//- Constructor
tabulatedWallFunction
(
const dictionary& dict,
const polyMesh& mesh,
const word& name
);
//- Destructor
virtual ~tabulatedWallFunction();
//- Selector
static autoPtr<tabulatedWallFunction> New
(
const dictionary& dict,
const polyMesh& mesh
);
// Member Functions
// Access
//- Return the inverted table name
inline const word& invertedTableName() const;
//- Return the inverted table
inline const uniformInterpolationTable<scalar>&
invertedTable() const;
// I-O
//- Write
virtual void write();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace tabulatedWallFunctions
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "tabulatedWallFunctionI.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,44 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tabulatedWallFunction.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
inline const Foam::word&
Foam::tabulatedWallFunctions::tabulatedWallFunction::invertedTableName() const
{
return invertedTableName_;
}
inline const Foam::uniformInterpolationTable<Foam::scalar>&
Foam::tabulatedWallFunctions::tabulatedWallFunction::invertedTable() const
{
return invertedTable_;
}
// ************************************************************************* //

View File

@ -0,0 +1,70 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tabulatedWallFunction.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
autoPtr<tabulatedWallFunction> tabulatedWallFunction::New
(
const dictionary& dict,
const polyMesh& mesh
)
{
word twfTypeName = dict.lookup("tabulatedWallFunction");
Info<< "Selecting tabulatedWallFunction " << twfTypeName << endl;
dictionaryConstructorTable::iterator cstrIter =
dictionaryConstructorTablePtr_->find(twfTypeName);
if (cstrIter == dictionaryConstructorTablePtr_->end())
{
FatalErrorIn
(
"tabulatedWallFunction::New(const dictionary&, const polyMesh&)"
) << "Unknown tabulatedWallFunction type " << twfTypeName
<< nl << nl << "Valid tabulatedWallFunction types are:" << nl
<< dictionaryConstructorTablePtr_->toc()
<< exit(FatalError);
}
return autoPtr<tabulatedWallFunction>(cstrIter()(dict, mesh));
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace tabulatedWallFunctions
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,37 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object wallFunctionDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
tabulatedWallFunction SpaldingsLaw;
invertedTableName uPlusWallFunctionData;
dx 0.2;
x0 -3;
xMax 7;
log10 yes;
bound yes;
SpaldingsLawCoeffs
{
kappa 0.41;
E 9.8;
}
// ************************************************************************* //

View File

@ -0,0 +1,67 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
wallFunctionTable
Description
Generates a table suitable for use by tabulated wall functions.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "tabulatedWallFunction.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
IOdictionary dict
(
IOobject
(
"wallFunctionDict",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED
)
);
autoPtr<tabulatedWallFunctions::tabulatedWallFunction>
twf(tabulatedWallFunctions::tabulatedWallFunction::New(dict, mesh));
// twf->writeData(Info);
twf->write();
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //