Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
rhoPimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, see also commit 655fc78748
rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.
thermoType
{
type hePsiThermo;
mixture pureMixture;
transport sutherland;
thermo janaf;
equationOfState perfectGas;
specie specie;
energy sensibleInternalEnergy;
}
instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas
thermoType
{
type heRhoThermo;
mixture pureMixture;
properties liquid;
energy sensibleInternalEnergy;
}
mixture
{
H2O;
}
instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.
In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.
For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.
SIMPLE
{
nNonOrthogonalCorrectors 0;
pMinFactor 0.1;
pMaxFactor 1.5;
transonic yes;
consistent yes;
residualControl
{
p 1e-3;
U 1e-4;
e 1e-3;
"(k|epsilon|omega)" 1e-3;
}
}
Description
Simple solidification porosity model
This is a simple approximation to solidification where the solid phase
is represented as a porous blockage with the drag-coefficient evaluated from
\f[
S = - \alpha \rho D(T) U
\f]
where
\vartable
\alpha | Optional phase-fraction of solidifying phase
D(T) | User-defined drag-coefficient as function of temperature
\endvartable
Note that the latent heat of solidification is not included and the
temperature is unchanged by the modelled change of phase.
Example of the solidification model specification:
\verbatim
type solidification;
solidificationCoeffs
{
// Solidify between 330K and 330.5K
D table
(
(330.0 10000) // Solid below 330K
(330.5 0) // Liquid above 330.5K
);
// Optional phase-fraction of solidifying phase
alpha alpha.liquid;
// Solidification porosity is isotropic
// use the global coordinate system
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (1 0 0);
e2 (0 1 0);
}
}
}
\endverbatim
Description
Simple solidification porosity model
This is a simple approximation to solidification where the solid phase
is represented as a porous blockage with the drag-coefficient evaluated from
\f[
S = - \rho D(T) U
\f]
where
\vartable
D(T) | User-defined drag-coefficient as function of temperature
\endvartable
Note that the latent heat of solidification is not included and the
temperature is unchanged by the modelled change of phase.
Example of the solidification model specification:
\verbatim
type solidification;
solidificationCoeffs
{
// Solidify between 330K and 330.5K
D table
(
(330.0 10000) // Solid below 330K
(330.5 0) // Liquid above 330.5K
);
// Solidification porosity is isotropic
// use the global coordinate system
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (1 0 0);
e2 (0 1 0);
}
}
}
\endverbatim
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.
Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
e.g. in tutorials/heatTransfer/buoyantSimpleFoam/externalCoupledCavity/0/T
hot
{
type externalCoupledTemperature;
commsDir "${FOAM_CASE}/comms";
file "data";
initByExternal yes;
log true;
value uniform 307.75; // 34.6 degC
}
Previously both 'file' and 'fileName' were used inconsistently in different
classes and given that there is no confusion or ambiguity introduced by using
the simpler 'file' rather than 'fileName' this change simplifies the use and
maintenance of OpenFOAM.
which provided warning about backward-compatibility issue with setting div
schemes for steady-state. It caused confusion by generating incorrect warning
messages for compressible cases for which the 'bounded' should NOT be applied to
the 'div(phid,p)'.
in which the reactions are enabled only in the specified list of
cellZones. e.g. in constant/combustionProperties
combustionModel zoneCombustion<psiChemistryCombustion>;
active true;
zoneCombustionCoeffs
{
zones (catalyst);
}
and in constant/zoneCombustionProperties
combustionModel laminar<psiChemistryCombustion>;
active true;
laminarCoeffs
{}
This supports the abstraction of the set of fields from the field code
generation macros making it easier to change the set of fields supported
by OpenFOAM. This functionality is demonstrated in the updated
fvPatchFields macros and will be applied to the rest of the field code
generation macros in the future.
to ensure 'patchType' is set as specified.
Required substantial change to the organization of the reading of the
'value' entry requiring careful testing and there may be some residual
issues remaining. Please report any problems with the reading and
initialization of patch fields.
Resolves bug-report http://bugs.openfoam.org/view.php?id=2266