The "Refresh Times" button now triggers a re-render of the visualisation
as well as scanning for new times and fields. This prevents old
overwritten data from remaining on screen despite everything else having
been updated.
ParaView has been updated to version 5.4.0. The C++ panel has been
deleted and replaced with a panel based on the new(er) XML API. This
reader works for ParaView-4.0.1 and newer. The ParaView 3 reader remains
unchanged.
Update issues have also been fixed. All the time directories are now
scanned for fields and clouds when filling the selection lists. This
stops fields from disappearing when the time is changed. The scan is
only done on startup and when the refresh button is pressed.
The list of available Lagrangian fields also now shows a combined set of
all the clouds. Previously, only fields from the first cloud were shown.
If a field does not apply to all the clouds, ParaView will display it's
name in the dropdown menu with a "(partial)" qualifier.
Some undocumented and incomplete bits of code, which were not being
compiled, have been removed.
Tracking through an inverted region of the mesh happens in a reversed
direction relative to a non-inverted region. Usually, this allows the
tracking to propagate normally, regardless of the sign of the space.
However, in rare cases, it is possible for a straight trajectory to form
a closed loop through both positive and negative regions. This causes
the tracking to loop indefinitely.
To fix this, the displacement through inverted regions has been
artifically increased by a small amount (1% at the moment). This has the
effect that the change in track fraction over the negative part of the
loop no longer exactly cancels the change over the positive part, and
the track therefore terminates.
The KinematicCloud::patchData method has been made consistent on moving
meshes and/or when the time-step is being sub-cycled.
It has also been altered to calculate the normal component of a moving
patch's velocity directly from the point motions. This prevents an
infinite loop occuring due to inconsistency between the velocity used to
calculate a rebound and that used when tracking.
Some minor style improvements to the particle class have also been made.
Currently heat is assumed to be removed by heat-transfer to the wall so the
energy remains unchanged by the phase-change. This approximation can only be
removed if the interface to the transfer models is extended to support transfers
to and from the film AND the primary region.
The particle collector was collecting some particles twice due to a
tolerance extending the tracked path. This has been removed. The new
tracking algorithm does not generate the same sorts of spurious
tolerance-scale motions that the old one did, so this extension of the
tracking path is unnecessary.
Some particles were also not being collected at all as they were hitting
a diagonal of the collection polygon and registering as not having hit
either of the adjacent triangles. The hit criteria has been rewritten. A
hit now occurs when the normals of the triangles created by joining the
intersection point with the polygon edges are all in the same direction
as the overall polygon normal. This calculation is not affected by the
polygon's diagonals.
The issue was raised by, and resolved with support from, Karl Meredith
at FM Global.
This resolves bug-report https://bugs.openfoam.org/view.php?id=2595