Files
OpenFOAM-5.x/src/finiteVolume/fvMatrices/solvers/MULES/MULESTemplates.C
Henry Weller 2ac4a4e84c interFoam family: Added run-time selectable LTS support
LTS is selected by the ddt scheme e.g. in the
tutorials/multiphase/interFoam/ras/DTCHull case:

ddtSchemes
{
    default         localEuler rDeltaT;
}

LTSInterFoam is no longer needed now that interFoam includes LTS
support.
2015-06-26 18:32:20 +01:00

632 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MULES.H"
#include "upwind.H"
#include "fvcSurfaceIntegrate.H"
#include "localEulerDdtScheme.H"
#include "slicedSurfaceFields.H"
#include "wedgeFvPatch.H"
#include "syncTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class RdeltaTType, class RhoType, class SpType, class SuType>
void Foam::MULES::explicitSolve
(
const RdeltaTType& rDeltaT,
const RhoType& rho,
volScalarField& psi,
const surfaceScalarField& phiPsi,
const SpType& Sp,
const SuType& Su
)
{
Info<< "MULES: Solving for " << psi.name() << endl;
const fvMesh& mesh = psi.mesh();
scalarField& psiIf = psi;
const scalarField& psi0 = psi.oldTime();
psiIf = 0.0;
fvc::surfaceIntegrate(psiIf, phiPsi);
if (mesh.moving())
{
psiIf =
(
mesh.Vsc0()().field()*rho.oldTime().field()
*psi0*rDeltaT/mesh.Vsc()().field()
+ Su.field()
- psiIf
)/(rho.field()*rDeltaT - Sp.field());
}
else
{
psiIf =
(
rho.oldTime().field()*psi0*rDeltaT
+ Su.field()
- psiIf
)/(rho.field()*rDeltaT - Sp.field());
}
psi.correctBoundaryConditions();
}
template<class RhoType, class SpType, class SuType>
void Foam::MULES::explicitSolve
(
const RhoType& rho,
volScalarField& psi,
const surfaceScalarField& phiPsi,
const SpType& Sp,
const SuType& Su
)
{
const fvMesh& mesh = psi.mesh();
const scalar rDeltaT = 1.0/mesh.time().deltaTValue();
explicitSolve(rDeltaT, rho, psi, phiPsi, Sp, Su);
}
template<class RhoType, class SpType, class SuType>
void Foam::MULES::explicitSolve
(
const RhoType& rho,
volScalarField& psi,
const surfaceScalarField& phi,
surfaceScalarField& phiPsi,
const SpType& Sp,
const SuType& Su,
const scalar psiMax,
const scalar psiMin
)
{
const fvMesh& mesh = psi.mesh();
psi.correctBoundaryConditions();
bool LTS =
word(mesh.ddtScheme("default"))
== fv::localEulerDdtScheme<scalar>::typeName;
if (LTS)
{
const volScalarField& rDeltaT =
mesh.objectRegistry::lookupObject<volScalarField>("rSubDeltaT");
limit
(
rDeltaT,
rho,
psi,
phi,
phiPsi,
Sp,
Su,
psiMax,
psiMin,
false
);
explicitSolve(rDeltaT, rho, psi, phiPsi, Sp, Su);
}
else
{
const scalar rDeltaT = 1.0/mesh.time().deltaTValue();
limit
(
rDeltaT,
rho,
psi,
phi,
phiPsi,
Sp,
Su,
psiMax,
psiMin,
false
);
explicitSolve(rDeltaT, rho, psi, phiPsi, Sp, Su);
}
}
template<class RdeltaTType, class RhoType, class SpType, class SuType>
void Foam::MULES::limiter
(
scalarField& allLambda,
const RdeltaTType& rDeltaT,
const RhoType& rho,
const volScalarField& psi,
const surfaceScalarField& phiBD,
const surfaceScalarField& phiCorr,
const SpType& Sp,
const SuType& Su,
const scalar psiMax,
const scalar psiMin
)
{
const scalarField& psiIf = psi;
const volScalarField::GeometricBoundaryField& psiBf = psi.boundaryField();
const fvMesh& mesh = psi.mesh();
const dictionary& MULEScontrols = mesh.solverDict(psi.name());
label nLimiterIter
(
MULEScontrols.lookupOrDefault<label>("nLimiterIter", 3)
);
scalar smoothLimiter
(
MULEScontrols.lookupOrDefault<scalar>("smoothLimiter", 0)
);
const scalarField& psi0 = psi.oldTime();
const labelUList& owner = mesh.owner();
const labelUList& neighb = mesh.neighbour();
tmp<volScalarField::DimensionedInternalField> tVsc = mesh.Vsc();
const scalarField& V = tVsc();
const scalarField& phiBDIf = phiBD;
const surfaceScalarField::GeometricBoundaryField& phiBDBf =
phiBD.boundaryField();
const scalarField& phiCorrIf = phiCorr;
const surfaceScalarField::GeometricBoundaryField& phiCorrBf =
phiCorr.boundaryField();
slicedSurfaceScalarField lambda
(
IOobject
(
"lambda",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh,
dimless,
allLambda,
false // Use slices for the couples
);
scalarField& lambdaIf = lambda;
surfaceScalarField::GeometricBoundaryField& lambdaBf =
lambda.boundaryField();
scalarField psiMaxn(psiIf.size(), psiMin);
scalarField psiMinn(psiIf.size(), psiMax);
scalarField sumPhiBD(psiIf.size(), 0.0);
scalarField sumPhip(psiIf.size(), VSMALL);
scalarField mSumPhim(psiIf.size(), VSMALL);
forAll(phiCorrIf, facei)
{
label own = owner[facei];
label nei = neighb[facei];
psiMaxn[own] = max(psiMaxn[own], psiIf[nei]);
psiMinn[own] = min(psiMinn[own], psiIf[nei]);
psiMaxn[nei] = max(psiMaxn[nei], psiIf[own]);
psiMinn[nei] = min(psiMinn[nei], psiIf[own]);
sumPhiBD[own] += phiBDIf[facei];
sumPhiBD[nei] -= phiBDIf[facei];
scalar phiCorrf = phiCorrIf[facei];
if (phiCorrf > 0.0)
{
sumPhip[own] += phiCorrf;
mSumPhim[nei] += phiCorrf;
}
else
{
mSumPhim[own] -= phiCorrf;
sumPhip[nei] -= phiCorrf;
}
}
forAll(phiCorrBf, patchi)
{
const fvPatchScalarField& psiPf = psiBf[patchi];
const scalarField& phiBDPf = phiBDBf[patchi];
const scalarField& phiCorrPf = phiCorrBf[patchi];
const labelList& pFaceCells = mesh.boundary()[patchi].faceCells();
if (psiPf.coupled())
{
const scalarField psiPNf(psiPf.patchNeighbourField());
forAll(phiCorrPf, pFacei)
{
label pfCelli = pFaceCells[pFacei];
psiMaxn[pfCelli] = max(psiMaxn[pfCelli], psiPNf[pFacei]);
psiMinn[pfCelli] = min(psiMinn[pfCelli], psiPNf[pFacei]);
}
}
else
{
forAll(phiCorrPf, pFacei)
{
label pfCelli = pFaceCells[pFacei];
psiMaxn[pfCelli] = max(psiMaxn[pfCelli], psiPf[pFacei]);
psiMinn[pfCelli] = min(psiMinn[pfCelli], psiPf[pFacei]);
}
}
forAll(phiCorrPf, pFacei)
{
label pfCelli = pFaceCells[pFacei];
sumPhiBD[pfCelli] += phiBDPf[pFacei];
scalar phiCorrf = phiCorrPf[pFacei];
if (phiCorrf > 0.0)
{
sumPhip[pfCelli] += phiCorrf;
}
else
{
mSumPhim[pfCelli] -= phiCorrf;
}
}
}
psiMaxn = min(psiMaxn, psiMax);
psiMinn = max(psiMinn, psiMin);
if (smoothLimiter > SMALL)
{
psiMaxn =
min(smoothLimiter*psiIf + (1.0 - smoothLimiter)*psiMaxn, psiMax);
psiMinn =
max(smoothLimiter*psiIf + (1.0 - smoothLimiter)*psiMinn, psiMin);
}
if (mesh.moving())
{
tmp<volScalarField::DimensionedInternalField> V0 = mesh.Vsc0();
psiMaxn =
V
*(
(rho.field()*rDeltaT - Sp.field())*psiMaxn
- Su.field()
)
- (V0().field()*rDeltaT)*rho.oldTime().field()*psi0
+ sumPhiBD;
psiMinn =
V
*(
Su.field()
- (rho.field()*rDeltaT - Sp.field())*psiMinn
)
+ (V0().field()*rDeltaT)*rho.oldTime().field()*psi0
- sumPhiBD;
}
else
{
psiMaxn =
V
*(
(rho.field()*rDeltaT - Sp.field())*psiMaxn
- Su.field()
- (rho.oldTime().field()*rDeltaT)*psi0
)
+ sumPhiBD;
psiMinn =
V
*(
Su.field()
- (rho.field()*rDeltaT - Sp.field())*psiMinn
+ (rho.oldTime().field()*rDeltaT)*psi0
)
- sumPhiBD;
}
scalarField sumlPhip(psiIf.size());
scalarField mSumlPhim(psiIf.size());
for (int j=0; j<nLimiterIter; j++)
{
sumlPhip = 0.0;
mSumlPhim = 0.0;
forAll(lambdaIf, facei)
{
label own = owner[facei];
label nei = neighb[facei];
scalar lambdaPhiCorrf = lambdaIf[facei]*phiCorrIf[facei];
if (lambdaPhiCorrf > 0.0)
{
sumlPhip[own] += lambdaPhiCorrf;
mSumlPhim[nei] += lambdaPhiCorrf;
}
else
{
mSumlPhim[own] -= lambdaPhiCorrf;
sumlPhip[nei] -= lambdaPhiCorrf;
}
}
forAll(lambdaBf, patchi)
{
scalarField& lambdaPf = lambdaBf[patchi];
const scalarField& phiCorrfPf = phiCorrBf[patchi];
const labelList& pFaceCells = mesh.boundary()[patchi].faceCells();
forAll(lambdaPf, pFacei)
{
label pfCelli = pFaceCells[pFacei];
scalar lambdaPhiCorrf = lambdaPf[pFacei]*phiCorrfPf[pFacei];
if (lambdaPhiCorrf > 0.0)
{
sumlPhip[pfCelli] += lambdaPhiCorrf;
}
else
{
mSumlPhim[pfCelli] -= lambdaPhiCorrf;
}
}
}
forAll(sumlPhip, celli)
{
sumlPhip[celli] =
max(min
(
(sumlPhip[celli] + psiMaxn[celli])
/(mSumPhim[celli] - SMALL),
1.0), 0.0
);
mSumlPhim[celli] =
max(min
(
(mSumlPhim[celli] + psiMinn[celli])
/(sumPhip[celli] + SMALL),
1.0), 0.0
);
}
const scalarField& lambdam = sumlPhip;
const scalarField& lambdap = mSumlPhim;
forAll(lambdaIf, facei)
{
if (phiCorrIf[facei] > 0.0)
{
lambdaIf[facei] = min
(
lambdaIf[facei],
min(lambdap[owner[facei]], lambdam[neighb[facei]])
);
}
else
{
lambdaIf[facei] = min
(
lambdaIf[facei],
min(lambdam[owner[facei]], lambdap[neighb[facei]])
);
}
}
forAll(lambdaBf, patchi)
{
fvsPatchScalarField& lambdaPf = lambdaBf[patchi];
const scalarField& phiCorrfPf = phiCorrBf[patchi];
const fvPatchScalarField& psiPf = psiBf[patchi];
if (isA<wedgeFvPatch>(mesh.boundary()[patchi]))
{
lambdaPf = 0;
}
else if (psiPf.coupled())
{
const labelList& pFaceCells =
mesh.boundary()[patchi].faceCells();
forAll(lambdaPf, pFacei)
{
label pfCelli = pFaceCells[pFacei];
if (phiCorrfPf[pFacei] > 0.0)
{
lambdaPf[pFacei] =
min(lambdaPf[pFacei], lambdap[pfCelli]);
}
else
{
lambdaPf[pFacei] =
min(lambdaPf[pFacei], lambdam[pfCelli]);
}
}
}
else
{
const labelList& pFaceCells =
mesh.boundary()[patchi].faceCells();
const scalarField& phiBDPf = phiBDBf[patchi];
const scalarField& phiCorrPf = phiCorrBf[patchi];
forAll(lambdaPf, pFacei)
{
// Limit outlet faces only
if ((phiBDPf[pFacei] + phiCorrPf[pFacei]) > SMALL*SMALL)
{
label pfCelli = pFaceCells[pFacei];
if (phiCorrfPf[pFacei] > 0.0)
{
lambdaPf[pFacei] =
min(lambdaPf[pFacei], lambdap[pfCelli]);
}
else
{
lambdaPf[pFacei] =
min(lambdaPf[pFacei], lambdam[pfCelli]);
}
}
}
}
}
syncTools::syncFaceList(mesh, allLambda, minEqOp<scalar>());
}
}
template<class RdeltaTType, class RhoType, class SpType, class SuType>
void Foam::MULES::limit
(
const RdeltaTType& rDeltaT,
const RhoType& rho,
const volScalarField& psi,
const surfaceScalarField& phi,
surfaceScalarField& phiPsi,
const SpType& Sp,
const SuType& Su,
const scalar psiMax,
const scalar psiMin,
const bool returnCorr
)
{
const fvMesh& mesh = psi.mesh();
surfaceScalarField phiBD(upwind<scalar>(psi.mesh(), phi).flux(psi));
surfaceScalarField& phiCorr = phiPsi;
phiCorr -= phiBD;
scalarField allLambda(mesh.nFaces(), 1.0);
slicedSurfaceScalarField lambda
(
IOobject
(
"lambda",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh,
dimless,
allLambda,
false // Use slices for the couples
);
limiter
(
allLambda,
rDeltaT,
rho,
psi,
phiBD,
phiCorr,
Sp,
Su,
psiMax,
psiMin
);
if (returnCorr)
{
phiCorr *= lambda;
}
else
{
phiPsi = phiBD + lambda*phiCorr;
}
}
template<class SurfaceScalarFieldList>
void Foam::MULES::limitSum(SurfaceScalarFieldList& phiPsiCorrs)
{
{
UPtrList<scalarField> phiPsiCorrsInternal(phiPsiCorrs.size());
forAll(phiPsiCorrs, phasei)
{
phiPsiCorrsInternal.set(phasei, &phiPsiCorrs[phasei]);
}
limitSum(phiPsiCorrsInternal);
}
surfaceScalarField::GeometricBoundaryField& bfld =
phiPsiCorrs[0].boundaryField();
forAll(bfld, patchi)
{
if (bfld[patchi].coupled())
{
UPtrList<scalarField> phiPsiCorrsPatch(phiPsiCorrs.size());
forAll(phiPsiCorrs, phasei)
{
phiPsiCorrsPatch.set
(
phasei,
&phiPsiCorrs[phasei].boundaryField()[patchi]
);
}
limitSum(phiPsiCorrsPatch);
}
}
}
// ************************************************************************* //