Files
OpenFOAM-5.x/src/postProcessing/functionObjects/utilities/blendingFactor/blendingFactorTemplates.C
Henry Weller 7d192447f0 Boundary conditions: Added extrapolatedCalculatedFvPatchField
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.

zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.

The entire OpenFOAM-dev code-base has been updated following the above
recommendations.

Henry G. Weller
CFD Direct
2016-02-20 22:44:37 +00:00

121 lines
3.8 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "gaussConvectionScheme.H"
#include "blendedSchemeBase.H"
#include "fvcCellReduce.H"
#include "zeroGradientFvPatchFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
Foam::volScalarField& Foam::blendingFactor::factor
(
const GeometricField<Type, fvPatchField, volMesh>& field
)
{
const word fieldName = "blendingFactor:" + field.name();
if (!obr_.foundObject<volScalarField>(fieldName))
{
const fvMesh& mesh = refCast<const fvMesh>(obr_);
volScalarField* factorPtr =
new volScalarField
(
IOobject
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("0", dimless, 0.0),
zeroGradientFvPatchScalarField::typeName
);
obr_.store(factorPtr);
}
return
const_cast<volScalarField&>
(
obr_.lookupObject<volScalarField>(fieldName)
);
}
template<class Type>
void Foam::blendingFactor::calc()
{
typedef GeometricField<Type, fvPatchField, volMesh> fieldType;
if (!obr_.foundObject<fieldType>(fieldName_))
{
return;
}
const fvMesh& mesh = refCast<const fvMesh>(obr_);
const fieldType& field = mesh.lookupObject<fieldType>(fieldName_);
const word divScheme("div(" + phiName_ + ',' + fieldName_ + ')');
ITstream& its = mesh.divScheme(divScheme);
const surfaceScalarField& phi =
mesh.lookupObject<surfaceScalarField>(phiName_);
tmp<fv::convectionScheme<Type>> cs =
fv::convectionScheme<Type>::New(mesh, phi, its);
const fv::gaussConvectionScheme<Type>& gcs =
refCast<const fv::gaussConvectionScheme<Type>>(cs());
const surfaceInterpolationScheme<Type>& interpScheme =
gcs.interpScheme();
if (!isA<blendedSchemeBase<Type>>(interpScheme))
{
FatalErrorInFunction
<< interpScheme.typeName << " is not a blended scheme"
<< exit(FatalError);
}
// retrieve the face-based blending factor
const blendedSchemeBase<Type>& blendedScheme =
refCast<const blendedSchemeBase<Type>>(interpScheme);
const surfaceScalarField factorf(blendedScheme.blendingFactor(field));
// convert into vol field whose values represent the local face maxima
volScalarField& factor = this->factor(field);
factor = fvc::cellReduce(factorf, maxEqOp<scalar>());
factor.correctBoundaryConditions();
}
// ************************************************************************* //