populationBalanceModel: Added Prince and Blanch (1990) coalescence model

Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
This commit is contained in:
Will Bainbridge
2018-05-16 16:04:17 +01:00
parent fc76565a70
commit 018da5a3ce
12 changed files with 405 additions and 65 deletions

View File

@ -21,6 +21,7 @@ populationBalanceModel/coalescenceModels/coalescenceModel/coalescenceModel.C
populationBalanceModel/coalescenceModels/constantCoalescence/constantCoalescence.C
populationBalanceModel/coalescenceModels/CoulaloglouTavlaridesCoalescence/CoulaloglouTavlaridesCoalescence.C
populationBalanceModel/coalescenceModels/hydrodynamic/hydrodynamic.C
populationBalanceModel/coalescenceModels/PrinceBlanch/PrinceBlanch.C
populationBalanceModel/binaryBreakupModels/binaryBreakupModel/binaryBreakupModel.C
populationBalanceModel/binaryBreakupModels/powerLawUniformBinary/powerLawUniformBinary.C

View File

@ -26,7 +26,6 @@ License
#include "LaakkonenAlopaeusAittamaa.H"
#include "addToRunTimeSelectionTable.H"
#include "phaseCompressibleTurbulenceModel.H"
#include "phaseSystem.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
@ -80,10 +79,6 @@ Foam::diameterModels::breakupModels::LaakkonenAlopaeusAittamaa::setBreakupRate
{
const phaseModel& continuousPhase = popBal_.continuousPhase();
const sizeGroup& fi = *popBal_.sizeGroups()[i];
const volScalarField sigma
(
popBal_.fluid().sigma(phasePair(fi.phase(), continuousPhase))
);
breakupRate =
C1_*cbrt(continuousTurbulence().epsilon())
@ -91,7 +86,7 @@ Foam::diameterModels::breakupModels::LaakkonenAlopaeusAittamaa::setBreakupRate
(
sqrt
(
C2_*sigma
C2_*popBal_.sigmaWithContinuousPhase(fi.phase())
/(
continuousPhase.rho()*pow(fi.d(), 5.0/3.0)
*pow(continuousTurbulence().epsilon(), 2.0/3.0)

View File

@ -27,18 +27,18 @@ Class
Description
Model of Laakkonen et al. (2006). The total breakup rate is calculated by
\f[
C_1 \epsilon_c^{1/3}
\mathrm{erfc}
\left(
\sqrt
{
C_2 \frac{\sigma}{\rho_c \epsilon_c^{2/3} (6v_i/\pi)^{5/9}}
+ C_3 \frac{\mu_c}{\sqrt{\rho_c \rho_d}
\epsilon_c^{1/3} (6v_i/\pi)^{4/9}}
}
\right)
\f]
\f[
C_1 \epsilon_c^{1/3}
\mathrm{erfc}
\left(
\sqrt
{
C_2 \frac{\sigma}{\rho_c \epsilon_c^{2/3} (6v_i/\pi)^{5/9}}
+ C_3 \frac{\mu_c}{\sqrt{\rho_c \rho_d}
\epsilon_c^{1/3} (6v_i/\pi)^{4/9}}
}
\right)
\f]
where

View File

@ -84,7 +84,7 @@ addToCoalescenceRate
(
- C2_*continuousPhase.mu()*continuousPhase.rho()
*continuousTurbulence().epsilon()
/sqr(sigma(fi.phase().name(), continuousPhase.name()))
/sqr(popBal_.sigmaWithContinuousPhase(fi.phase()))
/pow3(1 + popBal_.alphas())
*pow4(cbrt(fi.x())*cbrt(fj.x())/(cbrt(fi.x()) + cbrt(fj.x())))
);

View File

@ -28,18 +28,18 @@ Description
Model of Coulaloglou and Tavlarides (1977). The coalescence rate is
calculated by
\f[
C_1 (v_i^{2/3} + v_j^{2/3}) (v_i^{2/9} + v_j^{2/9})^{1/2}
\frac{\epsilon_c^{1/3}}{1 + \alpha_d}
\text{exp}
\left[
- C_2 \frac{\mu_c \rho_c}{\sigma^2}
\frac{\epsilon_c}{(1 + \alpha_d)^{3}}
\left(
\frac{v_i^{1/3} v_j^{1/3}}{v_i^{1/3} + v_j^{1/3}}
\right)^{4}
\right]
\f]
\f[
C_1 (v_i^{2/3} + v_j^{2/3}) (v_i^{2/9} + v_j^{2/9})^{1/2}
\frac{\epsilon_c^{1/3}}{1 + \alpha_d}
\text{exp}
\left[
- C_2 \frac{\mu_c \rho_c}{\sigma^2}
\frac{\epsilon_c}{(1 + \alpha_d)^{3}}
\left(
\frac{v_i^{1/3} v_j^{1/3}}{v_i^{1/3} + v_j^{1/3}}
\right)^{4}
\right]
\f]
where

View File

@ -0,0 +1,146 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "PrinceBlanch.H"
#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace diameterModels
{
namespace coalescenceModels
{
defineTypeNameAndDebug(PrinceBlanch, 0);
addToRunTimeSelectionTable
(
coalescenceModel,
PrinceBlanch,
dictionary
);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::diameterModels::coalescenceModels::PrinceBlanch::
PrinceBlanch
(
const populationBalanceModel& popBal,
const dictionary& dict
)
:
coalescenceModel(popBal, dict),
C1_("C1", dimless, dict.lookupOrDefault<scalar>("C1", 0.356)),
h0_("h0", dimLength, dict.lookupOrDefault<scalar>("h0", 1e-4)),
hf_("hf", dimLength, dict.lookupOrDefault<scalar>("h0", 1e-8)),
turbulentCollisions_(dict.lookup("turbulentCollisions")),
buoyantCollisions_(dict.lookup("buoyantCollisions")),
laminarShearCollisions_(dict.lookup("laminarShearCollisions"))
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void
Foam::diameterModels::coalescenceModels::PrinceBlanch::
addToCoalescenceRate
(
volScalarField& coalescenceRate,
const label i,
const label j
)
{
const phaseModel& continuousPhase = popBal_.continuousPhase();
const sizeGroup& fi = *popBal_.sizeGroups()[i];
const sizeGroup& fj = *popBal_.sizeGroups()[j];
scalar pi = constant::mathematical::pi;
const uniformDimensionedVectorField& g =
popBal_.mesh().lookupObject<uniformDimensionedVectorField>("g");
dimensionedScalar rij = 1.0/(1.0/fi.d() + 1.0/fj.d());
volScalarField collisionEfficiency =
exp
(
- sqrt
(
pow3(rij)*continuousPhase.rho()
/(16.0*popBal_.sigmaWithContinuousPhase(fi.phase()))
)
*log(h0_/hf_)
*cbrt(continuousTurbulence().epsilon())/pow(rij, 2.0/3.0)
);
if (turbulentCollisions_)
{
coalescenceRate +=
(
C1_*pi*sqr(fi.d() + fj.d())
*cbrt(continuousTurbulence().epsilon())
*sqrt(pow(fi.d(), 2.0/3.0) + pow(fj.d(), 2.0/3.0))
)
*collisionEfficiency;
}
if (buoyantCollisions_)
{
dimensionedScalar Sij = pi/4.0*sqr(fi.d() + fj.d());
coalescenceRate +=
(
Sij
*mag
(
sqrt
(
2.14*popBal_.sigmaWithContinuousPhase(fi.phase())
/(continuousPhase.rho()*fi.d()) + 0.505*mag(g)*fi.d()
)
- sqrt
(
2.14*popBal_.sigmaWithContinuousPhase(fi.phase())
/(continuousPhase.rho()*fj.d()) + 0.505*mag(g)*fj.d()
)
)
)
*collisionEfficiency;
}
if (laminarShearCollisions_)
{
FatalErrorInFunction
<< "Laminar shear collision contribution not implemented for "
<< this->type() << " coalescence model."
<< exit(FatalError);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,205 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::diameterModels::coalescenceModels::PrinceBlanch
Description
Model of Prince and Blanch (1990). The coalescence rate is calculated by
\f[
\left( \theta_{ij}^{T} + \theta_{ij}^{B} + \theta_{ij}^{LS} \right)
\lambda_{ij}
\f]
with the coalescence efficiency
\f[
\lambda_{ij} =
\mathrm{exp}
\left(
- \sqrt{\frac{r_{ij}^3 \rho_c}{16 \sigma}}
\mathrm{ln} \left(\frac{h_0}{h_f}\right)
\epsilon_c^{1/3}/r_{ij}^{2/3}
\right)\;,
\f]
the turbulent collision rate
\f[
\theta_{ij}^{T} =
C_1 \pi (d_i + d_j)^{2} \epsilon_c^{1/3}
\sqrt{d_{i}^{2/3} + d_{j}^{2/3}}\;,
\f]
and the buoyancy-driven collision rate
\f[
\theta_{ij}^{B} = S_{ij} \left| u_{ri} - u_{rj} \right|\;,
\f]
where the rise velocity of bubble i is calculated by
\f[
u_{ri} = \sqrt{2.14 \sigma / \left(\rho_c d_i \right) + 0.505 g d_i}\;,
\f]
the equivalent radius by
\f[
r_{ij} = \left( \frac{1}{d_i} + \frac{1}{d_j} \right)^{-1}
\f]
and the collision cross sectional area by
\f[
S_{ij} = \frac{\pi}{4} \left(d_i + d_j\right)^{2}\;.
\f]
Note that in equation 2, the bubble radius has been substituted by the
bubble diameter. Also the expression for the equivalent radius r_ij
(equation 19 in the paper of Prince and Blanch (1990)) was corrected.
The collision rate contribution due to laminar shear in the continuous phase
is currently neglected.
\vartable
\theta_{ij}^{T} | Turbulent collision rate [m3/s]
\theta_{ij}^{B} | Buoyancy-driven collision rate [m3/s]
\theta_{ij}^{LS} | Laminar shear collision rate [m3/s]
\lambda_{ij} | Coalescence efficiency [-]
r_{ij} | Equivalent radius [m]
\rho_c | Density of continous phase [kg/m3]
\sigma | Surface tension [N/m]
h_0 | Initial film thickness [m]
h_f | Critical film thickness [m]
\epsilon_c | Continuous phase turbulent dissipation rate [m2/s3]
d_i | Diameter of bubble i [m]
d_j | Diameter of bubble j [m]
u_{ri} | Rise velocity of bubble i [m/s]
S_{ij} | Collision cross sectional area [m2]
g | Gravitational constant [m/s2]
\endvartable
References:
\verbatim
"Bubble Coalescence and Break-Up in Air-Sparged Bubble-Columns"
Prince, M.J., Blanch, H.W.
AIChE Journal, Vol. 36, Issue 10, 1990, pp. 1485-1499
\endverbatim
Usage
\table
Property | Description | Required | Default value
C1 | Coefficient C1 | no | 0.089
\endtable
SourceFiles
PrinceBlanch.C
\*---------------------------------------------------------------------------*/
#ifndef PrinceBlanch_H
#define PrinceBlanch_H
#include "coalescenceModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace diameterModels
{
namespace coalescenceModels
{
/*---------------------------------------------------------------------------*\
Class PrinceBlanch Declaration
\*---------------------------------------------------------------------------*/
class PrinceBlanch
:
public coalescenceModel
{
// Private data
//- Optional coefficient C1, defaults to 0.089
dimensionedScalar C1_;
//- Initial film thickness, defaults to 1e-4m
dimensionedScalar h0_;
//- Critical film thickness, defaults to 1e-8m
dimensionedScalar hf_;
//- Switch for considering turbulent collisions
Switch turbulentCollisions_;
//- Switch for considering buoyancy-induced collisions
Switch buoyantCollisions_;
//- Switch for considering buoyancy-induced collisions
Switch laminarShearCollisions_;
public:
//- Runtime type information
TypeName("PrinceBlanch");
// Constructor
PrinceBlanch
(
const populationBalanceModel& popBal,
const dictionary& dict
);
//- Destructor
virtual ~PrinceBlanch()
{}
// Member Functions
//- Add to coalescenceRate
virtual void addToCoalescenceRate
(
volScalarField& coalescenceRate,
const label i,
const label j
);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace coalescenceModels
} // End namespace diameterModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -24,7 +24,6 @@ License
\*---------------------------------------------------------------------------*/
#include "coalescenceModel.H"
#include "phaseSystem.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
@ -38,25 +37,6 @@ namespace diameterModels
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
const Foam::tmp<Foam::volScalarField>
Foam::diameterModels::coalescenceModel::sigma
(
const word& phase1,
const word& phase2
) const
{
const phasePairKey key
(
phase1,
phase2
);
return popBal_.fluid().sigma(key);
}
// * * * * * * * * * * * * * * * * Selector * * * * * * * * * * * * * * * * //
Foam::autoPtr<Foam::diameterModels::coalescenceModel>

View File

@ -59,16 +59,6 @@ protected:
const populationBalanceModel& popBal_;
// Protected member functions
//- Return the surface tension coefficient
const tmp<volScalarField> sigma
(
const word& phase1,
const word& phase2
) const;
public:
//- Runtime type information

View File

@ -32,10 +32,10 @@ Description
mass conservation following Kumar and Ramkrishna (1996). Also the internal
coordinate was changed to particle volume, which gives
\f[
\frac{60}{v_j} \left(\frac{v_i}{v_j}\right)^{2}
\left(1 - \frac{v_i}{v_j}\right)^{2}
\f]
\f[
\frac{60}{v_j} \left(\frac{v_i}{v_j}\right)^{2}
\left(1 - \frac{v_i}{v_j}\right)^{2}
\f]
where

View File

@ -1145,6 +1145,22 @@ Foam::diameterModels::populationBalanceModel::gamma
}
const Foam::tmp<Foam::volScalarField>
Foam::diameterModels::populationBalanceModel::sigmaWithContinuousPhase
(
const phaseModel& dispersedPhase
) const
{
const phasePairKey key
(
dispersedPhase.name(),
continuousPhase_.name()
);
return fluid_.sigma(key);
}
void Foam::diameterModels::populationBalanceModel::solve()
{
const dictionary& solutionControls = mesh_.solverDict(name_);

View File

@ -412,6 +412,13 @@ public:
const dimensionedScalar& v
) const;
//- Return the surface tension coefficient between a given dispersed
// and the continuous phase
const tmp<volScalarField> sigmaWithContinuousPhase
(
const phaseModel& dispersedPhase
) const;
//- Solve the population balance equation
void solve();
};