mirror of
https://github.com/OpenFOAM/OpenFOAM-6.git
synced 2025-12-08 06:57:46 +00:00
Turbulence models: minor clean-up
This commit is contained in:
@ -272,6 +272,7 @@ void ShihQuadraticKE::correct()
|
||||
(nut_*twoSymm(gradU) - nonlinearStress_) && gradU
|
||||
);
|
||||
|
||||
|
||||
// Update epsilon and G at the wall
|
||||
epsilon_.boundaryField().updateCoeffs();
|
||||
|
||||
@ -287,9 +288,7 @@ void ShihQuadraticKE::correct()
|
||||
);
|
||||
|
||||
epsEqn().relax();
|
||||
|
||||
epsEqn().boundaryManipulate(epsilon_.boundaryField());
|
||||
|
||||
solve(epsEqn);
|
||||
bound(epsilon_, epsilonMin_);
|
||||
|
||||
|
||||
@ -1,50 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
wallDissipation
|
||||
|
||||
Description
|
||||
Set wall dissipation in the epsilon matrix
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
{
|
||||
const fvPatchList& patches = mesh_.boundary();
|
||||
|
||||
forAll(patches, patchi)
|
||||
{
|
||||
const fvPatch& p = patches[patchi];
|
||||
|
||||
if (isA<wallFvPatch>(p))
|
||||
{
|
||||
epsEqn().setValues
|
||||
(
|
||||
p.faceCells(),
|
||||
epsilon_.boundaryField()[patchi].patchInternalField()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -253,7 +253,6 @@ void qZeta::correct()
|
||||
|
||||
|
||||
// Zeta equation
|
||||
|
||||
tmp<fvScalarMatrix> zetaEqn
|
||||
(
|
||||
fvm::ddt(zeta_)
|
||||
@ -271,7 +270,6 @@ void qZeta::correct()
|
||||
|
||||
|
||||
// q equation
|
||||
|
||||
tmp<fvScalarMatrix> qEqn
|
||||
(
|
||||
fvm::ddt(q_)
|
||||
|
||||
@ -256,15 +256,12 @@ void kEpsilon<BasicTurbulenceModel>::correct()
|
||||
);
|
||||
|
||||
epsEqn().relax();
|
||||
|
||||
epsEqn().boundaryManipulate(epsilon_.boundaryField());
|
||||
|
||||
solve(epsEqn);
|
||||
bound(epsilon_, this->epsilonMin_);
|
||||
|
||||
|
||||
// Turbulent kinetic energy equation
|
||||
|
||||
tmp<fvScalarMatrix> kEqn
|
||||
(
|
||||
fvm::ddt(alpha, rho, k_)
|
||||
|
||||
@ -83,29 +83,30 @@ void epsilonLowReWallFunctionFvPatchScalarField::calculate
|
||||
const scalarField magGradUw(mag(Uw.snGrad()));
|
||||
|
||||
// Set epsilon and G
|
||||
forAll(nutw, faceI)
|
||||
forAll(nutw, facei)
|
||||
{
|
||||
label cellI = patch.faceCells()[faceI];
|
||||
label celli = patch.faceCells()[facei];
|
||||
|
||||
scalar yPlus = Cmu25*sqrt(k[cellI])*y[faceI]/nuw[faceI];
|
||||
scalar yPlus = Cmu25*sqrt(k[celli])*y[facei]/nuw[facei];
|
||||
|
||||
scalar w = cornerWeights[faceI];
|
||||
scalar w = cornerWeights[facei];
|
||||
|
||||
if (yPlus > yPlusLam_)
|
||||
{
|
||||
epsilon[cellI] = w*Cmu75*pow(k[cellI], 1.5)/(kappa_*y[faceI]);
|
||||
epsilon[celli] = w*Cmu75*pow(k[celli], 1.5)/(kappa_*y[facei]);
|
||||
}
|
||||
else
|
||||
{
|
||||
epsilon[cellI] = w*2.0*k[cellI]*nuw[faceI]/sqr(y[faceI]);
|
||||
epsilon[celli] = w*2.0*k[celli]*nuw[facei]/sqr(y[facei]);
|
||||
}
|
||||
|
||||
G[cellI] =
|
||||
// It is not clear that G should be adjusted for low-Re BCs
|
||||
G[celli] +=
|
||||
w
|
||||
*(nutw[faceI] + nuw[faceI])
|
||||
*magGradUw[faceI]
|
||||
*Cmu25*sqrt(k[cellI])
|
||||
/(kappa_*y[faceI]);
|
||||
*(nutw[facei] + nuw[facei])
|
||||
*magGradUw[facei]
|
||||
*Cmu25*sqrt(k[celli])
|
||||
/(kappa_*y[facei]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -17,7 +17,7 @@ FoamFile
|
||||
|
||||
dimensions [ 0 2 -2 0 0 0 0 ];
|
||||
|
||||
internalField uniform 1;
|
||||
internalField uniform 0.1;
|
||||
|
||||
boundaryField
|
||||
{
|
||||
|
||||
@ -33,6 +33,7 @@ divSchemes
|
||||
div(phi,R) bounded Gauss linear;
|
||||
div(phi,nuTilda) bounded Gauss linear;
|
||||
div((nuEff*dev2(T(grad(U))))) Gauss linear;
|
||||
div(nonlinearStress) Gauss linear;
|
||||
}
|
||||
|
||||
laplacianSchemes
|
||||
|
||||
Reference in New Issue
Block a user