foamyHexMesh: Added cell sizing based on local surface closeness

First run the surfaceFeatureExtract with the "closeness" option enabled in the
surfaceFeatureExtractDict to extract the surface closeness point field

    // Out put the closeness of surface elements to other surface elements.
    closeness               yes;

Then enable cell sizing based on local surface closeness by specifying the
"internalCloseness" options in the foamyHexMeshDict e.g.

motionControl
{
    defaultCellSize             4;

    minimumCellSizeCoeff        0.1;
    maxSmoothingIterations      100;
    maxRefinementIterations     2;

    shapeControlFunctions
    {
        geometry
        {
            type                        searchableSurfaceControl;
            priority                    1;
            mode                        inside;

            surfaceCellSizeFunction     nonUniformField;

            cellSizeCalculationType     automatic;

            curvature                   false;
            curvatureFile               dummy;
            featureProximity            false;
            featureProximityFile        dummy;
            internalCloseness           true;
            internalClosenessFile       geometry.internalPointCloseness;
            internalClosenessCellSizeCoeff 25;
            curvatureCellSizeCoeff      0;
            maximumCellSizeCoeff        1;
            cellSizeFunction            uniform;
        }
    }
}
This commit is contained in:
Henry Weller
2018-01-14 12:05:38 +00:00
parent a5a034a1d2
commit 3e761d6a41
12 changed files with 1640 additions and 1280 deletions

View File

@ -1,3 +1,6 @@
surfaceExtractCloseness.C
surfaceExtractPointCloseness.C
surfaceFeatureExtractUtilities.C
surfaceFeatureExtract.C
EXE = $(FOAM_APPBIN)/surfaceFeatureExtract

View File

@ -0,0 +1,155 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "surfaceFeatureExtract.H"
#include "Time.H"
#include "triSurfaceMesh.H"
#include "vtkSurfaceWriter.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::extractCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
)
{
// Searchable triSurface
const triSurfaceMesh searchSurf
(
IOobject
(
sFeatFileName + ".closeness",
runTime.constant(),
"triSurface",
runTime
),
surf
);
// Prepare start and end points for intersection tests
const vectorField& normals = searchSurf.faceNormals();
const scalar span = searchSurf.bounds().mag();
const pointField start(searchSurf.faceCentres() - span*normals);
const pointField end(searchSurf.faceCentres() + span*normals);
const pointField& faceCentres = searchSurf.faceCentres();
List<List<pointIndexHit>> allHitinfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitinfo);
scalarField internalCloseness(start.size(), GREAT);
scalarField externalCloseness(start.size(), GREAT);
forAll(allHitinfo, fi)
{
const List<pointIndexHit>& hitInfo = allHitinfo[fi];
processHit
(
internalCloseness[fi],
externalCloseness[fi],
fi,
surf,
start[fi],
faceCentres[fi],
end[fi],
normals[fi],
normals,
hitInfo
);
}
triSurfaceScalarField internalClosenessField
(
IOobject
(
sFeatFileName + ".internalCloseness",
runTime.constant(),
"triSurface",
runTime
),
surf,
dimLength,
internalCloseness
);
internalClosenessField.write();
triSurfaceScalarField externalClosenessField
(
IOobject
(
sFeatFileName + ".externalCloseness",
runTime.constant(),
"triSurface",
runTime
),
surf,
dimLength,
externalCloseness
);
externalClosenessField.write();
if (writeVTK)
{
const faceList faces(surf.faces());
vtkSurfaceWriter().write
(
runTime.constantPath()/"triSurface",// outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalCloseness", // fieldName
internalCloseness,
false, // isNodeValues
true // verbose
);
vtkSurfaceWriter().write
(
runTime.constantPath()/"triSurface",// outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalCloseness", // fieldName
externalCloseness,
false, // isNodeValues
true // verbose
);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,314 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "surfaceFeatureExtract.H"
#include "Time.H"
#include "triSurfaceMesh.H"
#include "vtkSurfaceWriter.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::processHit
(
scalar& internalCloseness,
scalar& externalCloseness,
const label fi,
const triSurface& surf,
const point& start,
const point& p,
const point& end,
const vector& normal,
const vectorField& normals,
const List<pointIndexHit>& hitInfo
)
{
if (hitInfo.size() < 1)
{
drawHitProblem(fi, surf, start, p, end, hitInfo);
}
else if (hitInfo.size() == 1)
{
if (!hitInfo[0].hit())
{
}
else if (hitInfo[0].index() != fi)
{
drawHitProblem(fi, surf, start, p, end, hitInfo);
}
}
else
{
label ownHiti = -1;
forAll(hitInfo, hI)
{
// Find the hit on the triangle that launched the ray
if (hitInfo[hI].index() == fi)
{
ownHiti = hI;
break;
}
}
if (ownHiti < 0)
{
drawHitProblem(fi, surf, start, p, end, hitInfo);
}
else if (ownHiti == 0)
{
// There are no internal hits, the first hit is the
// closest external hit
if
(
(normal & normals[hitInfo[ownHiti + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness = min
(
externalCloseness,
mag(p - hitInfo[ownHiti + 1].hitPoint())
);
}
}
else if (ownHiti == hitInfo.size() - 1)
{
// There are no external hits, the last but one hit is
// the closest internal hit
if
(
(normal & normals[hitInfo[ownHiti - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness = min
(
internalCloseness,
mag(p - hitInfo[ownHiti - 1].hitPoint())
);
}
}
else
{
if
(
(normal & normals[hitInfo[ownHiti + 1].index()])
< externalToleranceCosAngle
)
{
externalCloseness = min
(
externalCloseness,
mag(p - hitInfo[ownHiti + 1].hitPoint())
);
}
if
(
(normal & normals[hitInfo[ownHiti - 1].index()])
< internalToleranceCosAngle
)
{
internalCloseness = min
(
internalCloseness,
mag(p - hitInfo[ownHiti - 1].hitPoint())
);
}
}
}
}
void Foam::extractPointCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
)
{
// Searchable triSurface
const triSurfaceMesh searchSurf
(
IOobject
(
sFeatFileName + ".closeness",
runTime.constant(),
"triSurface",
runTime
),
surf
);
// Prepare start and end points for intersection tests
const pointField& points = searchSurf.points();
const labelList& meshPoints = searchSurf.meshPoints();
const pointField& faceCentres = searchSurf.faceCentres();
const vectorField& normals = searchSurf.faceNormals();
const labelListList& pointFaces = searchSurf.pointFaces();
const scalar span = searchSurf.bounds().mag();
label nPointFaces = 0;
forAll(pointFaces, pfi)
{
nPointFaces += pointFaces[pfi].size();
}
pointField facePoints(nPointFaces);
pointField start(nPointFaces);
pointField end(nPointFaces);
label i = 0;
forAll(points, pi)
{
forAll(pointFaces[pi], pfi)
{
const label fi = pointFaces[pi][pfi];
facePoints[i] = (0.9*points[meshPoints[pi]] + 0.1*faceCentres[fi]);
const vector& n = normals[fi];
start[i] = facePoints[i] - span*n;
end[i] = facePoints[i] + span*n;
i++;
}
}
List<List<pointIndexHit>> allHitinfo;
// Find all intersections (in order)
searchSurf.findLineAll(start, end, allHitinfo);
scalarField internalCloseness(points.size(), GREAT);
scalarField externalCloseness(points.size(), GREAT);
i = 0;
forAll(points, pi)
{
forAll(pointFaces[pi], pfi)
{
const label fi = pointFaces[pi][pfi];
const List<pointIndexHit>& hitInfo = allHitinfo[i];
processHit
(
internalCloseness[pi],
externalCloseness[pi],
fi,
surf,
start[i],
facePoints[i],
end[i],
normals[fi],
normals,
hitInfo
);
i++;
}
}
triSurfacePointScalarField internalClosenessPointField
(
IOobject
(
sFeatFileName + ".internalPointCloseness",
runTime.constant(),
"triSurface",
runTime
),
surf,
dimLength,
internalCloseness
);
internalClosenessPointField.write();
triSurfacePointScalarField externalClosenessPointField
(
IOobject
(
sFeatFileName + ".externalPointCloseness",
runTime.constant(),
"triSurface",
runTime
),
surf,
dimLength,
externalCloseness
);
externalClosenessPointField.write();
if (writeVTK)
{
const faceList faces(surf.faces());
const Map<label>& meshPointMap = surf.meshPointMap();
forAll(meshPointMap, pi)
{
internalCloseness[pi] =
internalClosenessPointField[meshPointMap[pi]];
externalCloseness[pi] =
externalClosenessPointField[meshPointMap[pi]];
}
vtkSurfaceWriter().write
(
runTime.constantPath()/"triSurface",// outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"internalPointCloseness", // fieldName
internalCloseness,
true, // isNodeValues
true // verbose
);
vtkSurfaceWriter().write
(
runTime.constantPath()/"triSurface",// outputDir
sFeatFileName, // surfaceName
surf.points(),
faces,
"externalPointCloseness", // fieldName
externalCloseness,
true, // isNodeValues
true // verbose
);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,173 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceFeatureExtract
Description
Utility functions for surfaceFeatureExtract
\*---------------------------------------------------------------------------*/
#include "surfaceFeatures.H"
#include "extendedFeatureEdgeMesh.H"
#include "triSurfaceFields.H"
#include "plane.H"
#include "triadField.H"
namespace Foam
{
extern const scalar internalAngleTolerance;
extern const scalar internalToleranceCosAngle;
extern const scalar externalAngleTolerance;
extern const scalar externalToleranceCosAngle;
scalar calcVertexNormalWeight
(
const triFace& f,
const label pI,
const vector& fN,
const pointField& points
);
point randomPointInPlane(const plane& p);
triadField calcVertexCoordSys
(
const triSurface& surf,
const vectorField& pointNormals
);
vectorField calcVertexNormals(const triSurface& surf);
triSurfacePointScalarField calcCurvature
(
const word& name,
const Time& runTime,
const triSurface& surf,
const vectorField& pointNormals,
const triadField& pointCoordSys
);
bool edgesConnected(const edge& e1, const edge& e2);
scalar calcProximityOfFeaturePoints
(
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
);
scalar calcProximityOfFeatureEdges
(
const extendedFeatureEdgeMesh& efem,
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
);
void dumpBox(const treeBoundBox& bb, const fileName& fName);
//- Deletes all edges inside/outside bounding box from set.
void deleteBox
(
const triSurface& surf,
const treeBoundBox& bb,
const bool removeInside,
List<surfaceFeatures::edgeStatus>& edgeStat
);
bool onLine(const point& p, const linePointRef& line);
//- Deletes all edges inside/outside bounding box from set.
void deleteEdges
(
const triSurface& surf,
const plane& cutPlane,
List<surfaceFeatures::edgeStatus>& edgeStat
);
void processHit
(
scalar& internalCloseness,
scalar& externalCloseness,
const label fi,
const triSurface& surf,
const point& start,
const point& p,
const point& end,
const vector& normal,
const vectorField& normals,
const List<pointIndexHit>& hitInfo
);
void drawHitProblem
(
const label fi,
const triSurface& surf,
const point& start,
const point& p,
const point& end,
const List<pointIndexHit>& hitInfo
);
//- Unmark non-manifold edges if individual triangles are not features
void unmarkBaffles
(
const triSurface& surf,
const scalar includedAngle,
List<surfaceFeatures::edgeStatus>& edgeStat
);
//- Divide into multiple normal bins
// - return REGION if != 2 normals
// - return REGION if 2 normals that make feature angle
// - otherwise return NONE and set normals,bins
surfaceFeatures::edgeStatus checkFlatRegionEdge
(
const triSurface& surf,
const scalar tol,
const scalar includedAngle,
const label edgeI
);
void extractCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
);
void extractPointCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
);
void writeStats(const extendedFeatureEdgeMesh& fem, Ostream& os);
}
// ************************************************************************* //

View File

@ -0,0 +1,938 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceFeatureExtract
Description
Extracts and writes surface features to file. All but the basic feature
extraction is WIP.
Curvature calculation is an implementation of the algorithm from:
"Estimating Curvatures and their Derivatives on Triangle Meshes"
by S. Rusinkiewicz
\*---------------------------------------------------------------------------*/
#include "surfaceFeatureExtract.H"
#include "Time.H"
#include "meshTools.H"
#include "tensor2D.H"
#include "symmTensor2D.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
const Foam::scalar Foam::internalAngleTolerance(45);
const Foam::scalar Foam::internalToleranceCosAngle
(
cos(degToRad(180 - internalAngleTolerance))
);
const Foam::scalar Foam::externalAngleTolerance(10);
const Foam::scalar Foam::externalToleranceCosAngle
(
cos(degToRad(180 - externalAngleTolerance))
);
Foam::scalar Foam::calcVertexNormalWeight
(
const triFace& f,
const label pI,
const vector& fN,
const pointField& points
)
{
label index = findIndex(f, pI);
if (index == -1)
{
FatalErrorInFunction
<< "Point not in face" << abort(FatalError);
}
const vector e1 = points[f[index]] - points[f[f.fcIndex(index)]];
const vector e2 = points[f[index]] - points[f[f.rcIndex(index)]];
return mag(fN)/(magSqr(e1)*magSqr(e2) + VSMALL);
}
Foam::point Foam::randomPointInPlane(const plane& p)
{
// Perturb base point
const point& refPt = p.refPoint();
// ax + by + cz + d = 0
const FixedList<scalar, 4>& planeCoeffs = p.planeCoeffs();
const scalar perturbX = refPt.x() + 1e-3;
const scalar perturbY = refPt.y() + 1e-3;
const scalar perturbZ = refPt.z() + 1e-3;
if (mag(planeCoeffs[2]) < SMALL)
{
if (mag(planeCoeffs[1]) < SMALL)
{
const scalar x =
-1.0
*(
planeCoeffs[3]
+ planeCoeffs[1]*perturbY
+ planeCoeffs[2]*perturbZ
)/planeCoeffs[0];
return point
(
x,
perturbY,
perturbZ
);
}
const scalar y =
-1.0
*(
planeCoeffs[3]
+ planeCoeffs[0]*perturbX
+ planeCoeffs[2]*perturbZ
)/planeCoeffs[1];
return point
(
perturbX,
y,
perturbZ
);
}
else
{
const scalar z =
-1.0
*(
planeCoeffs[3]
+ planeCoeffs[0]*perturbX
+ planeCoeffs[1]*perturbY
)/planeCoeffs[2];
return point
(
perturbX,
perturbY,
z
);
}
}
Foam::triadField Foam::calcVertexCoordSys
(
const triSurface& surf,
const vectorField& pointNormals
)
{
const pointField& points = surf.points();
const Map<label>& meshPointMap = surf.meshPointMap();
triadField pointCoordSys(points.size());
forAll(points, pI)
{
const point& pt = points[pI];
const vector& normal = pointNormals[meshPointMap[pI]];
if (mag(normal) < SMALL)
{
pointCoordSys[meshPointMap[pI]] = triad::unset;
continue;
}
plane p(pt, normal);
// Pick random point in plane
vector dir1 = pt - randomPointInPlane(p);
dir1 /= mag(dir1);
vector dir2 = dir1 ^ normal;
dir2 /= mag(dir2);
pointCoordSys[meshPointMap[pI]] = triad(dir1, dir2, normal);
}
return pointCoordSys;
}
Foam::vectorField Foam::calcVertexNormals(const triSurface& surf)
{
// Weighted average of normals of faces attached to the vertex
// Weight = fA / (mag(e0)^2 * mag(e1)^2);
Info<< "Calculating vertex normals" << endl;
vectorField pointNormals(surf.nPoints(), Zero);
const pointField& points = surf.points();
const labelListList& pointFaces = surf.pointFaces();
const labelList& meshPoints = surf.meshPoints();
forAll(pointFaces, pI)
{
const labelList& pFaces = pointFaces[pI];
forAll(pFaces, fi)
{
const label facei = pFaces[fi];
const triFace& f = surf[facei];
vector fN = f.normal(points);
scalar weight = calcVertexNormalWeight
(
f,
meshPoints[pI],
fN,
points
);
pointNormals[pI] += weight*fN;
}
pointNormals[pI] /= mag(pointNormals[pI]) + VSMALL;
}
return pointNormals;
}
Foam::triSurfacePointScalarField Foam::calcCurvature
(
const word& name,
const Time& runTime,
const triSurface& surf,
const vectorField& pointNormals,
const triadField& pointCoordSys
)
{
Info<< "Calculating face curvature" << endl;
const pointField& points = surf.points();
const labelList& meshPoints = surf.meshPoints();
const Map<label>& meshPointMap = surf.meshPointMap();
triSurfacePointScalarField curvaturePointField
(
IOobject
(
name + ".curvature",
runTime.constant(),
"triSurface",
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
surf,
dimLength,
scalarField(points.size(), 0.0)
);
List<symmTensor2D> pointFundamentalTensors
(
points.size(),
symmTensor2D::zero
);
scalarList accumulatedWeights(points.size(), 0.0);
forAll(surf, fi)
{
const triFace& f = surf[fi];
const edgeList fEdges = f.edges();
// Calculate the edge vectors and the normal differences
vectorField edgeVectors(f.size(), Zero);
vectorField normalDifferences(f.size(), Zero);
forAll(fEdges, feI)
{
const edge& e = fEdges[feI];
edgeVectors[feI] = e.vec(points);
normalDifferences[feI] =
pointNormals[meshPointMap[e[0]]]
- pointNormals[meshPointMap[e[1]]];
}
// Set up a local coordinate system for the face
const vector& e0 = edgeVectors[0];
const vector eN = f.normal(points);
const vector e1 = (e0 ^ eN);
if (magSqr(eN) < ROOTVSMALL)
{
continue;
}
triad faceCoordSys(e0, e1, eN);
faceCoordSys.normalize();
// Construct the matrix to solve
scalarSymmetricSquareMatrix T(3, 0);
scalarDiagonalMatrix Z(3, 0);
// Least Squares
for (label i = 0; i < 3; ++i)
{
scalar x = edgeVectors[i] & faceCoordSys[0];
scalar y = edgeVectors[i] & faceCoordSys[1];
T(0, 0) += sqr(x);
T(1, 0) += x*y;
T(1, 1) += sqr(x) + sqr(y);
T(2, 1) += x*y;
T(2, 2) += sqr(y);
scalar dndx = normalDifferences[i] & faceCoordSys[0];
scalar dndy = normalDifferences[i] & faceCoordSys[1];
Z[0] += dndx*x;
Z[1] += dndx*y + dndy*x;
Z[2] += dndy*y;
}
// Perform Cholesky decomposition and back substitution.
// Decomposed matrix is in T and solution is in Z.
LUsolve(T, Z);
symmTensor2D secondFundamentalTensor(Z[0], Z[1], Z[2]);
// Loop over the face points adding the contribution of the face
// curvature to the points.
forAll(f, fpI)
{
const label patchPointIndex = meshPointMap[f[fpI]];
const triad& ptCoordSys = pointCoordSys[patchPointIndex];
if (!ptCoordSys.set())
{
continue;
}
// Rotate faceCoordSys to ptCoordSys
tensor rotTensor = rotationTensor(ptCoordSys[2], faceCoordSys[2]);
triad rotatedFaceCoordSys = rotTensor & tensor(faceCoordSys);
// Project the face curvature onto the point plane
vector2D cmp1
(
ptCoordSys[0] & rotatedFaceCoordSys[0],
ptCoordSys[0] & rotatedFaceCoordSys[1]
);
vector2D cmp2
(
ptCoordSys[1] & rotatedFaceCoordSys[0],
ptCoordSys[1] & rotatedFaceCoordSys[1]
);
tensor2D projTensor
(
cmp1,
cmp2
);
symmTensor2D projectedFundamentalTensor
(
projTensor.x() & (secondFundamentalTensor & projTensor.x()),
projTensor.x() & (secondFundamentalTensor & projTensor.y()),
projTensor.y() & (secondFundamentalTensor & projTensor.y())
);
// Calculate weight
// TODO: Voronoi area weighting
scalar weight = calcVertexNormalWeight
(
f,
meshPoints[patchPointIndex],
f.normal(points),
points
);
// Sum contribution of face to this point
pointFundamentalTensors[patchPointIndex] +=
weight*projectedFundamentalTensor;
accumulatedWeights[patchPointIndex] += weight;
}
if (false)
{
Info<< "Points = " << points[f[0]] << " "
<< points[f[1]] << " "
<< points[f[2]] << endl;
Info<< "edgeVecs = " << edgeVectors[0] << " "
<< edgeVectors[1] << " "
<< edgeVectors[2] << endl;
Info<< "normDiff = " << normalDifferences[0] << " "
<< normalDifferences[1] << " "
<< normalDifferences[2] << endl;
Info<< "faceCoordSys = " << faceCoordSys << endl;
Info<< "T = " << T << endl;
Info<< "Z = " << Z << endl;
}
}
forAll(curvaturePointField, pI)
{
pointFundamentalTensors[pI] /= (accumulatedWeights[pI] + SMALL);
vector2D principalCurvatures = eigenValues(pointFundamentalTensors[pI]);
//scalar curvature =
// (principalCurvatures[0] + principalCurvatures[1])/2;
scalar curvature = max
(
mag(principalCurvatures[0]),
mag(principalCurvatures[1])
);
//scalar curvature = principalCurvatures[0]*principalCurvatures[1];
curvaturePointField[meshPoints[pI]] = curvature;
}
return curvaturePointField;
}
bool Foam::edgesConnected(const edge& e1, const edge& e2)
{
if
(
e1.start() == e2.start()
|| e1.start() == e2.end()
|| e1.end() == e2.start()
|| e1.end() == e2.end()
)
{
return true;
}
return false;
}
Foam::scalar Foam::calcProximityOfFeaturePoints
(
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
scalar curDist = mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
return minDist;
}
Foam::scalar Foam::calcProximityOfFeatureEdges
(
const extendedFeatureEdgeMesh& efem,
const List<pointIndexHit>& hitList,
const scalar defaultCellSize
)
{
scalar minDist = defaultCellSize;
for
(
label hI1 = 0;
hI1 < hitList.size() - 1;
++hI1
)
{
const pointIndexHit& pHit1 = hitList[hI1];
if (pHit1.hit())
{
const edge& e1 = efem.edges()[pHit1.index()];
for
(
label hI2 = hI1 + 1;
hI2 < hitList.size();
++hI2
)
{
const pointIndexHit& pHit2 = hitList[hI2];
if (pHit2.hit())
{
const edge& e2 = efem.edges()[pHit2.index()];
// Don't refine if the edges are connected to each other
if (!edgesConnected(e1, e2))
{
scalar curDist =
mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist);
}
}
}
}
}
return minDist;
}
void Foam::dumpBox(const treeBoundBox& bb, const fileName& fName)
{
OFstream str(fName);
Info<< "Dumping bounding box " << bb << " as lines to obj file "
<< str.name() << endl;
pointField boxPoints(bb.points());
forAll(boxPoints, i)
{
meshTools::writeOBJ(str, boxPoints[i]);
}
forAll(treeBoundBox::edges, i)
{
const edge& e = treeBoundBox::edges[i];
str<< "l " << e[0]+1 << ' ' << e[1]+1 << nl;
}
}
void Foam::deleteBox
(
const triSurface& surf,
const treeBoundBox& bb,
const bool removeInside,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
forAll(edgeStat, edgeI)
{
const point eMid = surf.edges()[edgeI].centre(surf.localPoints());
if (removeInside ? bb.contains(eMid) : !bb.contains(eMid))
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
bool Foam::onLine(const point& p, const linePointRef& line)
{
const point& a = line.start();
const point& b = line.end();
if
(
( p.x() < min(a.x(), b.x()) || p.x() > max(a.x(), b.x()) )
|| ( p.y() < min(a.y(), b.y()) || p.y() > max(a.y(), b.y()) )
|| ( p.z() < min(a.z(), b.z()) || p.z() > max(a.z(), b.z()) )
)
{
return false;
}
return true;
}
void Foam::deleteEdges
(
const triSurface& surf,
const plane& cutPlane,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
const pointField& points = surf.points();
const labelList& meshPoints = surf.meshPoints();
forAll(edgeStat, edgeI)
{
const edge& e = surf.edges()[edgeI];
const point& p0 = points[meshPoints[e.start()]];
const point& p1 = points[meshPoints[e.end()]];
const linePointRef line(p0, p1);
// If edge does not intersect the plane, delete.
scalar intersect = cutPlane.lineIntersect(line);
point featPoint = intersect * (p1 - p0) + p0;
if (!onLine(featPoint, line))
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
void Foam::drawHitProblem
(
const label fi,
const triSurface& surf,
const point& start,
const point& p,
const point& end,
const List<pointIndexHit>& hitInfo
)
{
Info<< nl << "# findLineAll did not hit its own face."
<< nl << "# fi " << fi
<< nl << "# start " << start
<< nl << "# point " << p
<< nl << "# end " << end
<< nl << "# hitInfo " << hitInfo
<< endl;
meshTools::writeOBJ(Info, start);
meshTools::writeOBJ(Info, p);
meshTools::writeOBJ(Info, end);
Info<< "l 1 2 3" << endl;
meshTools::writeOBJ(Info, surf.points()[surf[fi][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[fi][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[fi][2]]);
Info<< "f 4 5 6" << endl;
forAll(hitInfo, hI)
{
label hFI = hitInfo[hI].index();
meshTools::writeOBJ(Info, surf.points()[surf[hFI][0]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][1]]);
meshTools::writeOBJ(Info, surf.points()[surf[hFI][2]]);
Info<< "f "
<< 3*hI + 7 << " "
<< 3*hI + 8 << " "
<< 3*hI + 9
<< endl;
}
}
void Foam::unmarkBaffles
(
const triSurface& surf,
const scalar includedAngle,
List<surfaceFeatures::edgeStatus>& edgeStat
)
{
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
const labelListList& edgeFaces = surf.edgeFaces();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() > 2)
{
label i0 = eFaces[0];
//const labelledTri& f0 = surf[i0];
const Foam::vector& n0 = surf.faceNormals()[i0];
//Pout<< "edge:" << edgeI << " n0:" << n0 << endl;
bool same = true;
for (label i = 1; i < eFaces.size(); i++)
{
//const labelledTri& f = surf[i];
const Foam::vector& n = surf.faceNormals()[eFaces[i]];
//Pout<< " mag(n&n0): " << mag(n&n0) << endl;
if (mag(n&n0) < minCos)
{
same = false;
break;
}
}
if (same)
{
edgeStat[edgeI] = surfaceFeatures::NONE;
}
}
}
}
Foam::surfaceFeatures::edgeStatus Foam::checkFlatRegionEdge
(
const triSurface& surf,
const scalar tol,
const scalar includedAngle,
const label edgeI
)
{
const edge& e = surf.edges()[edgeI];
const labelList& eFaces = surf.edgeFaces()[edgeI];
// Bin according to normal
DynamicList<Foam::vector> normals(2);
DynamicList<labelList> bins(2);
forAll(eFaces, eFacei)
{
const Foam::vector& n = surf.faceNormals()[eFaces[eFacei]];
// Find the normal in normals
label index = -1;
forAll(normals, normalI)
{
if (mag(n&normals[normalI]) > (1-tol))
{
index = normalI;
break;
}
}
if (index != -1)
{
bins[index].append(eFacei);
}
else if (normals.size() >= 2)
{
// Would be third normal. Mark as feature.
//Pout<< "** at edge:" << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]]
// << " have normals:" << normals
// << " and " << n << endl;
return surfaceFeatures::REGION;
}
else
{
normals.append(n);
bins.append(labelList(1, eFacei));
}
}
// Check resulting number of bins
if (bins.size() == 1)
{
// Note: should check here whether they are two sets of faces
// that are planar or indeed 4 faces al coming together at an edge.
//Pout<< "** at edge:"
// << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]]
// << " have single normal:" << normals[0]
// << endl;
return surfaceFeatures::NONE;
}
else
{
// Two bins. Check if normals make an angle
//Pout<< "** at edge:"
// << surf.localPoints()[e[0]]
// << surf.localPoints()[e[1]] << nl
// << " normals:" << normals << nl
// << " bins :" << bins << nl
// << endl;
if (includedAngle >= 0)
{
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
forAll(eFaces, i)
{
const Foam::vector& ni = surf.faceNormals()[eFaces[i]];
for (label j=i+1; j<eFaces.size(); j++)
{
const Foam::vector& nj = surf.faceNormals()[eFaces[j]];
if (mag(ni & nj) < minCos)
{
//Pout<< "have sharp feature between normal:" << ni
// << " and " << nj << endl;
// Is feature. Keep as region or convert to
// feature angle? For now keep as region.
return surfaceFeatures::REGION;
}
}
}
}
// So now we have two normals bins but need to make sure both
// bins have the same regions in it.
// 1. store + or - region number depending
// on orientation of triangle in bins[0]
const labelList& bin0 = bins[0];
labelList regionAndNormal(bin0.size());
forAll(bin0, i)
{
const labelledTri& t = surf.localFaces()[eFaces[bin0[i]]];
int dir = t.edgeDirection(e);
if (dir > 0)
{
regionAndNormal[i] = t.region()+1;
}
else if (dir == 0)
{
FatalErrorInFunction
<< exit(FatalError);
}
else
{
regionAndNormal[i] = -(t.region()+1);
}
}
// 2. check against bin1
const labelList& bin1 = bins[1];
labelList regionAndNormal1(bin1.size());
forAll(bin1, i)
{
const labelledTri& t = surf.localFaces()[eFaces[bin1[i]]];
int dir = t.edgeDirection(e);
label myRegionAndNormal;
if (dir > 0)
{
myRegionAndNormal = t.region()+1;
}
else
{
myRegionAndNormal = -(t.region()+1);
}
regionAndNormal1[i] = myRegionAndNormal;
label index = findIndex(regionAndNormal, -myRegionAndNormal);
if (index == -1)
{
// Not found.
//Pout<< "cannot find region " << myRegionAndNormal
// << " in regions " << regionAndNormal << endl;
return surfaceFeatures::REGION;
}
}
// Passed all checks, two normal bins with the same contents.
//Pout<< "regionAndNormal:" << regionAndNormal << endl;
//Pout<< "myRegionAndNormal:" << regionAndNormal1 << endl;
return surfaceFeatures::NONE;
}
}
void Foam::extractCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
);
void Foam::extractPointCloseness
(
const fileName &sFeatFileName,
const Time& runTime,
const triSurface &surf,
const bool writeVTK
);
void Foam::writeStats(const extendedFeatureEdgeMesh& fem, Ostream& os)
{
os << " points : " << fem.points().size() << nl
<< " of which" << nl
<< " convex : "
<< fem.concaveStart() << nl
<< " concave : "
<< (fem.mixedStart()-fem.concaveStart()) << nl
<< " mixed : "
<< (fem.nonFeatureStart()-fem.mixedStart()) << nl
<< " non-feature : "
<< (fem.points().size()-fem.nonFeatureStart()) << nl
<< " edges : " << fem.edges().size() << nl
<< " of which" << nl
<< " external edges : "
<< fem.internalStart() << nl
<< " internal edges : "
<< (fem.flatStart()- fem.internalStart()) << nl
<< " flat edges : "
<< (fem.openStart()- fem.flatStart()) << nl
<< " open edges : "
<< (fem.multipleStart()- fem.openStart()) << nl
<< " multiply connected : "
<< (fem.edges().size()- fem.multipleStart()) << endl;
}
// ************************************************************************* //