The use of random numbers for positioning within the cone injection
models has been made consistent across all cores. Some calls have been
synchronised by means of the globalSample methods, whilst others have
been replaced by non-randomised algorithms.
This resolves bug report https://bugs.openfoam.org/view.php?id=2956
The functions findMin and findMax return the index of the minimum or
maximum component, consistently with the functions in ListOps.H. The
perpendicular function returns an arbitrary vector perpendicular to the
supplied vector, with the same magnitude.
The changeDictonary setup has been removed and replaced with a more
typical boundary condition setup. Dictionary variables and wildcards
have been used to reduce repetition of the simulation parameters.
The tutorial now also demonstrates how to run a multi-region CHT case
completely in parallel. If run-time post processing was being utilised
there would be no need for reconstruction at any point.
Changed the default region name from "domain" to "region" for consistency with
the rest of OpenFOAM.
Changed the multiple default region numbering to start from 1 rather than 0
because the top-level mesh in the case directory is always named "region0".
Changed the default region numbering to only relate to the default named regions
and does not increment for explicitly named regions. This avoids a naming
dependency on the default and named region order.
Added new option "-defaultRegionName <name>"
to specify the base name of the unspecified regions, defaults to "region"
Two single-cell test cases have been added for reactingTwoPhaseEulerFoam
with an interface composition phase system. These are droplet
evaporation cases; one single- and one multi-component. The cases run
for every possible inert specie, and check that the results between the
runs are broadly similar.
The multi-component case shows some unphysical changes at the start due
to non-convergence of the pimple iteration during the initial transient.
This can be mitigated by reducing the time-step.
The handling of species transfer within the interface-composition phase
change system has been sigificantly altered. The explicit-implicit
caching of the mass transfer has been removed and been replaced with
storage of an Su-Sp coefficient pair. The mass transfer is now generated
on the fly from these coefficients.
These fixes resolve a number of issues involving multiple species for
which the pimple loop did not converge to a conservative solution. It
also removes the requirement for a second evaluation of the mass
transfer after solution of the species fraction equations.
This work was supported by Zhen Li, at Evonik
This fixes a consistency issue in the interface-composition method, and
also seems to improve stability/convergence of the pimple iteration in
the presence of significant mass transfer.