- Avoids the need for the 'OutputFilterFunctionObject' wrapper
- Time-control for execution and writing is now provided by the
'timeControlFunctionObject' which instantiates the processing
'functionObject' and controls its operation.
- Alternative time-control functionObjects can now be written and
selected at run-time without the need to compile wrapped version of
EVERY existing functionObject which would have been required in the
old structure.
- The separation of 'execute' and 'write' functions is now formalized in the
'functionObject' base-class and all derived classes implement the
two functions.
- Unnecessary implementations of functions with appropriate defaults
in the 'functionObject' base-class have been removed reducing
clutter and simplifying implementation of new functionObjects.
- The 'coded' 'functionObject' has also been updated, simplified and tested.
- Further simplification is now possible by creating some general
intermediate classes derived from 'functionObject'.
Rather than requiring each functionObject to handle failed construction
internally (using the active_ flag) the static member function "viable"
is provided which returns true if construction of the functionObject is
likely to be successful. Failed construction is then handled by the
wrapper-class which constructs the functionObject,
e.g. "OutputFilterFunctionObject".
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention. Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information. For consistency with the new convention in
"tmp" "dimensionedInteralFieldRef()" has been renamed "ref()".
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so
volScalarField::DimensionedInternalField -> volScalarField::Internal
In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions. To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct