Commit Graph

17 Commits

Author SHA1 Message Date
6701c09d21 InterfaceCompositionPhaseChangePhaseSystem: Fixes to species transfer
The handling of species transfer within the interface-composition phase
change system has been sigificantly altered. The explicit-implicit
caching of the mass transfer has been removed and been replaced with
storage of an Su-Sp coefficient pair. The mass transfer is now generated
on the fly from these coefficients.

These fixes resolve a number of issues involving multiple species for
which the pimple loop did not converge to a conservative solution. It
also removes the requirement for a second evaluation of the mass
transfer after solution of the species fraction equations.

This work was supported by Zhen Li, at Evonik
2018-05-29 15:16:00 +01:00
c236ab5369 InterfaceCompositionPhaseChangePhaseSystem: Corrected error message 2018-05-09 14:55:23 +01:00
b2b2b38a1c reactingEulerFoam: Corrected blending for two-resistance models 2018-04-23 14:11:21 +01:00
85a9e17dd5 reactingEulerFoam: Added phase transfer structure
An additional layer has been added into the phase system hierarchy which
facilitates the application of phase transfer modelling. These are
models which exchange mass between phases without the thermal coupling
that would be required to represent phase change. They can be thought of
as representation changes; e.g., between two phases representing
different droplet sizes of the same physical fluid.

To facilitate this, the heat transfer phase systems have been modified
and renamed and now both support mass transfer. The two sided version
is only required for derivations which support phase change.

The following changes to case settings have been made:

- The simplest instantiated phase systems have been renamed to
basicTwoPhaseSystem and basicMultiphaseSystem. The
heatAndMomentumTransfer*System entries in constant/phaseProperties files
will need updating accordingly.

- A phaseTransfer sub-model entry will be required in the
constant/phaseProperties file. This can be an empty list.

- The massTransfer switch in thermal phase change cases has been renamed
phaseTransfer, so as not to be confused with the mass transfer models
used by interface composition cases.

This work was supported by Georg Skillas and Zhen Li, at Evonik
2018-04-05 15:11:39 +01:00
e352828514 reactingMultiphaseEulerFoam: Stationary phase
Two new phase models have been added as selectable options for
reactingMultiphaseEulerFoam; pureStationaryPhaseModel and
pureStationaryIsothermalPhaseModel. These phases do not store a
velocity and their phase fractions remain constant throughout the
simulation. They are intended for use in modelling static particle beds
and other forms of porous media by means of the existing Euler-Euler
transfer models (drag, heat transfer, etc...).

Note that this functionality has not been extended to
reactingTwoPhaseEulerFoam, or the non-reacting *EulerFoam solvers.

Additional maintenance work has been carried out on the phase model
and phase system structure. The system can now loop over subsets of
phases with specific functionality (moving, multi-component, etc...) in
order to avoid testing for the existence of equations or variables in
the top level solver. The mass transfer handling and it's effect on
per-phase source terms has been refactored to reduce duplication. Const
and non-const access to phase properties has been formalised by renaming
non-const accessors with a "Ref" suffix, which is consistent with other
recent developments to classes including tmp and GeometricField, among
others. More sub-modelling details have been made private in order to
reduce the size of interfaces and improve abstraction.

This work was supported by Zhen Li, at Evonik
2018-03-23 09:08:52 +00:00
ba84383e26 reactingEulerFoam: Multiphase partial elimination and re-organisation
Partial elimination has been implemented for the multiphase Euler-Euler
solver. This does a linear solution of the drag system when calculating
flux and velocity corrections after the solution of the pressure
equation. This can improve the behaviour of the solution in the event
that the drag coupling is high. It is controlled by means of a
"partialElimination" switch within the PIMPLE control dictionary in
fvSolution.

A re-organisation has also been done in order to remove the exposure of
the sub-modelling from the top-level solver. Rather than looping the
drag, virtual mass, lift, etc..., models directly, the solver now calls
a set of phase-system methods which group the different force terms.
These new methods are documented in MomentumTransferPhaseSystem.H. Many
other accessors have been removed as a consequence of this grouping.

A bug was also fixed whereby the face-based algorithm was not
transferring the momentum associated with a given interfacial mass
transfer.
2018-03-08 12:41:14 +00:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
7fb371eb03 reactingEulerFoam::phasePair: Added const_iterator
which provides access to the current phase and the corresponding other phase for
each of the phases in the pair.  This allows some simplification of the phase
pair loops in several sub-models and avoids the need for pointer swaps.
2018-01-04 15:17:56 +00:00
cbe1e6e3b7 reactingEulerFoam::PhaseSystems: Updated phase pair "loops" 2018-01-01 22:12:13 +00:00
e779b244ce reactingEulerFoam: Corrected file permissions 2017-12-31 20:06:17 +00:00
d3a237f560 reactingEulerFoam: Multiphase thermal phase change and support for multiple mass transfer mechanisms
- Thermal phase change and wall boiling functionality has been generalized to
  support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
  simultaneous mass transfer mechanisms. For example, combination of thermal phase
  and inhomogeneous population balance models.

Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
2017-12-31 19:50:22 +00:00
4da46e7cd9 Updated headers 2016-04-30 21:53:19 +01:00
fe43b80536 GeometricField: Renamed internalField() -> primitiveField() and dimensionedInternalField() -> internalField()
These new names are more consistent and logical because:

primitiveField():
primitiveFieldRef():
    Provides low-level access to the Field<Type> (primitive field)
    without dimension or mesh-consistency checking.  This should only be
    used in the low-level functions where dimensional consistency is
    ensured by careful programming and computational efficiency is
    paramount.

internalField():
internalFieldRef():
    Provides access to the DimensionedField<Type, GeoMesh> of values on
    the internal mesh-type for which the GeometricField is defined and
    supports dimension and checking and mesh-consistency checking.
2016-04-30 21:40:09 +01:00
99c000fc94 Rationalized the indentation of C-preprocessor directives 2016-02-29 15:42:03 +00:00
abfe7d4c00 reactingEulerFoam: Updated phase loops 2015-09-17 09:19:03 +01:00
a188e6bc53 reactingEulerFoam: Use PtrListDictionary for list/table of phases
This makes looping over the phases much simpler which maintaining
support for phase-name lookup.
2015-09-16 21:29:09 +01:00
f688a0660d reactingTwoPhaseEulerFoam: Moved into reactingEulerFoam
and two-phase functionality separated from multiphase functionality
2015-08-26 12:49:26 +01:00