Commit Graph

53 Commits

Author SHA1 Message Date
c3be52bcd6 Corrected 'Class' entries in headers
Using script provided by Bruno Santos
See https://bugs.openfoam.org/view.php?id=2919
2018-05-07 14:18:44 +01:00
8a9bbb9a73 Corrected typos in comment: "the the" -> "the" 2018-03-25 12:09:00 +01:00
f2cc03bf8d MULES: Non-uniform limiting and additional form of limit sum
MULES and CMULES have been extended so that the limits can be supplied
as fields. These arguments are templated so that zeroField, oneField or
UniformField<scalar> can be used in place of a scalar value with no
additional overhead. The flux argument has been removed from the
unlimited CMULES correct functions in order to make this templating
possible.

An additional form of limit sum has also been added to MULES. This
limits the flux sum by ofsetting in proportion to the phase fraction,
rather than by reducing the magnitude of the fluxes with the same sign
as the imbalance. The new procedure makes it possible to limit the flux
sum in the presence of constraints without encountering a divide by
zero.
2018-03-22 16:55:36 +00:00
ba84383e26 reactingEulerFoam: Multiphase partial elimination and re-organisation
Partial elimination has been implemented for the multiphase Euler-Euler
solver. This does a linear solution of the drag system when calculating
flux and velocity corrections after the solution of the pressure
equation. This can improve the behaviour of the solution in the event
that the drag coupling is high. It is controlled by means of a
"partialElimination" switch within the PIMPLE control dictionary in
fvSolution.

A re-organisation has also been done in order to remove the exposure of
the sub-modelling from the top-level solver. Rather than looping the
drag, virtual mass, lift, etc..., models directly, the solver now calls
a set of phase-system methods which group the different force terms.
These new methods are documented in MomentumTransferPhaseSystem.H. Many
other accessors have been removed as a consequence of this grouping.

A bug was also fixed whereby the face-based algorithm was not
transferring the momentum associated with a given interfacial mass
transfer.
2018-03-08 12:41:14 +00:00
1073607cb0 Corrected spelling and typo's in comments
Resolves bug report https://bugs.openfoam.org/view.php?id=2845
2018-03-05 20:14:28 +00:00
5bff8d9dd1 IATE: Corrected dilatation source 2018-02-12 11:48:00 +00:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
018adc16c9 Corrected file conditional compilation macro names to be consistency with the file names
Scripts contributed by Bruno Santos
Resolves request https://bugs.openfoam.org/view.php?id=2692#c8735
2017-09-12 13:39:48 +01:00
53a524a280 Simplified scalar(0.0) -> scalar(0) and scalar(1.0) -> scalar(1) 2017-07-21 17:37:37 +01:00
7c301dbff4 Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
9801c25788 The "<type>Coeffs" sub-dictionary is now optional for most model parameters
except turbulence and lagrangian which will also be updated shortly.

For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:

transportModel  CrossPowerLaw;

CrossPowerLawCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  0.01;
    nuInf       [0 2 -1 0 0 0 0]  10;
    m           [0 0 1 0 0 0 0]   0.4;
    n           [0 0 0 0 0 0 0]   3;
}

BirdCarreauCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  1e-06;
    nuInf       [0 2 -1 0 0 0 0]  1e-06;
    k           [0 0 1 0 0 0 0]   0;
    n           [0 0 0 0 0 0 0]   1;
}

which allows a quick change between models, or using the simpler

transportModel  CrossPowerLaw;

nu0         [0 2 -1 0 0 0 0]  0.01;
nuInf       [0 2 -1 0 0 0 0]  10;
m           [0 0 1 0 0 0 0]   0.4;
n           [0 0 0 0 0 0 0]   3;

if quick switching between models is not required.

To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from

    // Seeding method.
    seedSampleSet   uniform;  //cloud; //triSurfaceMeshPointSet;

    uniformCoeffs
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

to the simpler

    // Seeding method.
    seedSampleSet
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

which also support the "<type>Coeffs" form

    // Seeding method.
    seedSampleSet
    {
        type        uniform;

        uniformCoeffs
        {
            axis        x;  //distance;

            // Note: tracks slightly offset so as not to be on a face
            start       (-1.001 -0.05 0.0011);
            end         (-1.001 -0.05 1.0011);
            nPoints     20;
        }
    }
2017-04-20 09:14:48 +01:00
ad92287afc Multi-phase solvers: Improved handling of inflow/outflow BCs in MULES
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.

Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
2017-01-17 22:43:47 +00:00
8a33e41a44 twoPhaseEulerFoam::twoPhaseSystem: Ensure inlet flow of BOTH phases matches the BCs
Previously the inlet flow of phase 1 (the phase solved for) is corrected
to match the inlet specification for that phase.  However, if the second
phase is also constrained at inlets the inlet flux must also be
corrected to match the inlet specification.
2016-10-28 10:50:10 +01:00
c12573c799 twoPhaseEulerFoam, reactingTwoPhaseEulerFoam: Corrected support for implicitPhasePressure with nAlphaCorr > 1
Resolves bug-report http://bugs.openfoam.org/view.php?id=2290
2016-10-12 18:43:18 +01:00
7656c076c8 C++11: Replaced the C NULL with the safer C++11 nullptr
Requires gcc version 4.7 or higher
2016-08-05 17:19:38 +01:00
728c564246 Minor reformatting 2016-06-12 21:12:13 +01:00
706ec804fd Added forward declaration of friend functions 2016-05-30 13:21:29 +01:00
75ea76187b GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit a25a449c9e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00
a25a449c9e GeometricField: Rationalized and simplified access to the dimensioned internal field
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so

volScalarField::DimensionedInternalField -> volScalarField::Internal

In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions.  To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
2016-04-27 21:32:45 +01:00
a4e2afa4b3 Completed boundaryField() -> boundaryFieldRef()
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1938

Because C++ does not support overloading based on the return-type there
is a problem defining both const and non-const member functions which
are resolved based on the const-ness of the object for which they are
called rather than the intent of the programmer declared via the
const-ness of the returned type.  The issue for the "boundaryField()"
member function is that the non-const version increments the
event-counter and checks the state of the stored old-time fields in case
the returned value is altered whereas the const version has no
side-effects and simply returns the reference.  If the the non-const
function is called within the patch-loop the event-counter may overflow.
To resolve this it in necessary to avoid calling the non-const form of
"boundaryField()" if the results is not altered and cache the reference
outside the patch-loop when mutation of the patch fields is needed.

The most straight forward way of resolving this problem is to name the
const and non-const forms of the member functions differently e.g. the
non-const form could be named:

    mutableBoundaryField()
    mutBoundaryField()
    nonConstBoundaryField()
    boundaryFieldRef()

Given that in C++ a reference is non-const unless specified as const:
"T&" vs "const T&" the logical convention would be

    boundaryFieldRef()
    boundaryFieldConstRef()

and given that the const form which is more commonly used is it could
simply be named "boundaryField()" then the logical convention is

    GeometricBoundaryField& boundaryFieldRef();

    inline const GeometricBoundaryField& boundaryField() const;

This is also consistent with the new "tmp" class for which non-const
access to the stored object is obtained using the ".ref()" member function.

This new convention for non-const access to the components of
GeometricField will be applied to "dimensionedInternalField()" and "internalField()" in the
future, i.e. "dimensionedInternalFieldRef()" and "internalFieldRef()".
2016-04-25 16:16:05 +01:00
6a27f7af46 boundaryField() -> boundaryFieldRef() 2016-04-24 22:07:37 +01:00
fda9aadb3a Specialized dotInterpolate for the efficient calculation of flux fields
e.g. (fvc::interpolate(HbyA) & mesh.Sf()) -> fvc::flux(HbyA)

This removes the need to create an intermediate face-vector field when
computing fluxes which is more efficient, reduces the peak storage and
improved cache coherency in addition to providing a simpler and cleaner
API.
2016-04-06 20:20:53 +01:00
fa8929df6d Use Zero rather than pTraits<Type>::zero unless a static typed '0' is required 2016-03-22 17:46:52 +00:00
44c73bfbe1 Made all template declarations consistent using 'class' rather than 'typename' 2016-03-22 15:02:55 +00:00
7859083246 OpenFOAM: Updated all libraries, solvers and utilities to use the new const-safe tmp
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file.  However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.

Please report any problems on Mantis.

Henry G. Weller
CFD Direct.
2016-02-26 17:31:28 +00:00
94c05a1e6c Update code to use the simpler C++11 template syntax removing spaces between closing ">"s 2016-01-10 22:41:16 +00:00
9a536b02a7 fvOptions: Reorganized and updated to simplify use in sub-models and maintenance
fvOptions are transferred to the database on construction using
fv::options::New which returns a reference.  The same function can be
use for construction and lookup so that fvOptions are now entirely
demand-driven.

The abstract base-classes for fvOptions now reside in the finiteVolume
library simplifying compilation and linkage.  The concrete
implementations of fvOptions are still in the single monolithic
fvOptions library but in the future this will be separated into smaller
libraries based on application area which may be linked at run-time in
the same manner as functionObjects.
2015-12-02 11:49:52 +00:00
10aea96ae5 applications: Update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-10 17:53:31 +00:00
03494fef5d Updated notImplemented -> NotImplemented
The new NotImplemented macro uses __PRETTY_FUNCTION__ for GNU compatible
compilers otherwise __func__ to provide the function name string.
2015-11-01 10:26:37 +00:00
34ce2e6d61 twoPhaseEulerFoam: Added support for alphat and thermal wall-functions 2015-08-26 18:06:43 +01:00
00b6400860 Removed trailing whitespace
Resolves bug-report http://openfoam.org/mantisbt/view.php?id=1805
2015-08-01 15:43:05 +01:00
40ae36b5f6 dimensioned<Type>: Added constructor from name, dimensions and dictionary
to simplify construction of dimensionedScalar properties and avoid the
duplication of the name string in the constructor call.
2015-07-21 12:57:07 +01:00
fa6902fde0 twoPhaseEulerFoam: Change the implicit particle-pressure and turbulence dispersion
to be phase-symmetric so that the results are independent of which
phase-fraction is solved.
2015-06-25 16:08:21 +01:00
c937c4c9ba twoPhaseEulerFoam: Move the residualAlpha used for drag into the phaseModel
This is necessary to guarantee consistency between the residualAlpha
used for drag and buoyancy in a multi-phase system
2015-06-07 18:55:24 +01:00
5c2fa016e4 Update header 2015-05-08 10:10:47 +01:00
cd245e9a3f twoPhaseEulerFoam: Update only the fixed-value phi patch fields before constructing the pressure eqn
Avoids small continuity error in parallel
2015-05-08 09:51:36 +01:00
01efa0b4c3 Updated header 2015-04-28 18:19:13 +01:00
355d702394 twoPhaseEulerFoam: Improvements to implicitPhasePressure 2015-04-28 18:18:34 +01:00
16f03f8a39 twoPhaseEulerFoam: Added experimental face-based momentum equation formulation
This formulation provides C-grid like pressure-flux staggering on an
unstructured mesh which is hugely beneficial for Euler-Euler multiphase
equations as it allows for all forces to be treated in a consistent
manner on the cell-faces which provides better balance, stability and
accuracy.  However, to achieve face-force consistency the momentum
transport terms must be interpolated to the faces reducing accuracy of
this part of the system but this is offset by the increase in accuracy
of the force-balance.

Currently it is not clear if this face-based momentum equation
formulation is preferable for all Euler-Euler simulations so I have
included it on a switch to allow evaluation and comparison with the
previous cell-based formulation.  To try the new algorithm simply switch
it on, e.g.:

PIMPLE
{
    nOuterCorrectors 3;
    nCorrectors      1;
    nNonOrthogonalCorrectors 0;
    faceMomentum     yes;
}

It is proving particularly good for bubbly flows, eliminating the
staggering patterns often seen in the air velocity field with the
previous algorithm, removing other spurious numerical artifacts in the
velocity fields and improving stability and allowing larger time-steps
For particle-gas flows the advantage is noticeable but not nearly as
pronounced as in the bubbly flow cases.

Please test the new algorithm on your cases and provide feedback.

Henry G. Weller
CFD Direct
2015-04-27 21:33:58 +01:00
0a1da8d438 twoPhaseEulerFoam: Improved handling of velocity/flux boundary conditions
Updated tutorials to converge pressure during PIMPLE loop to avoid
phase-fraction unboundedness which limits thermodynamics convergence.
2015-04-12 09:57:56 +01:00
17644d5bc2 Updated headers 2015-04-08 12:22:15 +01:00
fcbdfd4e44 twoPhaseEulerFoam: Interpolate lift, wall-lubrication and turbulent dispersion forces
Reduces or eliminates staggering patterns due to cell-force imbalances
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1363
2015-04-08 12:19:23 +01:00
76c7f68ac1 fluidThermo: Add compressibleTransportModel as base-class
Needed to create generic compressible turbulence model library
2015-02-17 17:25:26 +00:00
f58fd14271 Corrected capitalization of Doxygen documentation comments 2015-02-14 13:10:15 +00:00
e13210a6d6 twoPhaseEulerFoam/twoPhaseSystem/diameterModels/IATE: Corrected sign of random coalescence source
Resolves bug-report http://openfoam.org/mantisbt/view.php?id=1382
2015-02-13 09:23:22 +00:00
bdd5c4b8d3 twoPhaseEulerFoam/twoPhaseSystem/diameterModels/constantDiameter: Do not register the temporary diameter field 2015-02-11 14:48:34 +00:00
def52a306a Formatting: Rationalized the indentation of #include 2015-02-10 20:35:50 +00:00
c79d2566b0 twoPhaseEulerFoam: Corrected EoH2
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1505
2015-02-02 09:44:18 +00:00
b8145063e3 twoPhaseEulerFoam/twoPhaseSystem/diameterModels/IATE: Added fvOptions support
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1402
2015-01-22 10:59:45 +00:00
9053fefa6c multiphase solvers: print phase-name rather than alpha1/2 when printing max and min phase-fraction 2015-01-21 20:07:15 +00:00