Commit Graph

360 Commits

Author SHA1 Message Date
61cab84fa6 combustionModel, chemistryModel: Simplified model selection
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.

Examples of new combustion and chemistry entries are as follows:

    In constant/combustionProperties:

        combustionModel PaSR;

        combustionModel FSD;

    In constant/chemistryProperties:

        chemistryType
        {
            solver          ode;
            method          TDAC;
        }

All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.

The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
2017-12-11 14:49:21 +00:00
46704f121b interFoam: Merged dynamic mesh functionality of interDyMFoam into interFoam
and replaced interDyMFoam with a script which reports this change.

The interDyMFoam tutorials have been moved into the interFoam directory.

This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.

Henry G. Weller
CFD Direct Ltd.
2017-11-30 23:56:42 +00:00
7d6b1be4b3 pimpleFoam, rhoPimpleFoam, interDyMFoam: Rationalized mesh-motion support
Added support for mesh-motion update within PIMPLE loop in pimpleFoam and rhoPimpleFoam.
2017-11-30 13:07:42 +00:00
d63d6ea915 rhePimpleFoam: Merged dynamic mesh functionality of rhoPimpleDyMFoam into rhoPimpleFoam
and replaced rhoPimpleDyMFoam with a script which reports this change.

The rhoPimpleDyMFoam tutorials have been moved into the rhoPimpleFoam directory.

This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.

Henry G. Weller
CFD Direct Ltd.
2017-11-23 12:13:37 +00:00
7c2ba70deb Renamed tutorials/incompressible/pimpleFoam/RAS/wingMotion/wingMotion2D_pimpleDyMFoam
-> tutorials/incompressible/pimpleFoam/RAS/wingMotion/wingMotion2D_pimpleFoam
2017-11-22 21:41:08 +00:00
b9e4111b2c tutorials/incompressible/pimpleFoam: Updated pimpleDyMFoam tutorials to run pimpleFoam 2017-11-22 16:37:45 +00:00
d1fa9b6339 pimpleFoam: Merged dynamic mesh functionality of pimpleDyMFoam into pimpleFoam
and replaced pimpleDyMFoam with a script which reports this change.

The pimpleDyMFoam tutorials have been moved into the pimpleFoam directory.

This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.

Henry G. Weller
CFD Direct Ltd.
2017-11-22 16:31:30 +00:00
94666e5a95 tutorials/lagrangian/reactingParcelFoam/hotBoxes: Corrected Allrun-parallel script
Patch contributed by Federico Piscaglia
Resolves bug-report https://bugs.openfoam.org/view.php?id=2757
2017-11-14 20:48:53 +00:00
4b5a10d167 compressibleInterFoam family: merged two-phase momentum stress modelling from compressibleInterPhaseTransportFoam
The new momentum stress model selector class
compressibleInterPhaseTransportModel is now used to select between the options:

Description
    Transport model selection class for the compressibleInterFoam family of
    solvers.

    By default the standard mixture transport modelling approach is used in
    which a single momentum stress model (laminar, non-Newtonian, LES or RAS) is
    constructed for the mixture.  However if the \c simulationType in
    constant/turbulenceProperties is set to \c twoPhaseTransport the alternative
    Euler-Euler two-phase transport modelling approach is used in which separate
    stress models (laminar, non-Newtonian, LES or RAS) are instantiated for each
    of the two phases allowing for different modeling for the phases.

Mixture and two-phase momentum stress modelling is now supported in
compressibleInterFoam, compressibleInterDyMFoam and compressibleInterFilmFoam.
The prototype compressibleInterPhaseTransportFoam solver is no longer needed and
has been removed.
2017-11-14 10:03:20 +00:00
e98f0b6ce3 tutorials/multiphase/compressibleInterPhaseTransportFoam/climbingRod: Improved stability
for a wider range of phase initialization.
2017-11-09 15:04:18 +00:00
eea9f8dd86 tutorials/multiphase/multiphaseInterDyMFoam/laminar/mixerVesselAMI2D: Removed
This tutorial is not currently run due to conservation issues with AMI
2017-11-08 10:31:28 +00:00
6c8102bd9a climbingRod tutorial: added case information in README 2017-11-03 17:59:41 +00:00
04b562cd7a climbingRod tutorial: renamed fluid phase -> liquid 2017-11-01 10:00:30 +00:00
6b023ff9ac climbingRod tutorial: adjusted setFields box
so it does not coincide with cell centres
2017-11-01 09:23:26 +00:00
c3c777ee08 climbingRod tutorial: renamed water phase -> fluid 2017-11-01 09:21:37 +00:00
e96e40bb6c compressibleInterPhaseTransportFoam: New variant of compressibleInterFoam supporting separate phase stress models
In this version of compressibleInterFoam separate stress models (laminar,
non-Newtonian, LES or RAS) are instantiated for each of the two phases allowing
for completely different modeling for the phases.

e.g. in the climbingRod tutorial case provided a Newtonian laminar model is
instantiated for the air and a Maxwell non-Newtonian model is instantiated for
the viscoelastic liquid.  To stabilize the Maxwell model in regions where the
liquid phase-fraction is 0 the new symmTensorPhaseLimitStabilization fvOption is
applied.

Other phase stress modeling combinations are also possible, e.g. the air may be
turbulent but the liquid laminar and an RAS or LES model applied to the air
only.  However, to stabilize this combination a suitable fvOption would need to
be applied to the turbulence properties where the air phase-fraction is 0.

Henry G. Weller, Chris Greenshields
CFD Direct Ltd.
2017-10-30 09:36:43 +00:00
3055587a5c semiPermeableBaffle: Added two new boundary conditions and a tutorial
Two boundary conditions for the modelling of semi-permeable baffles have
been added. These baffles are permeable to a number of species within
the flow, and are impermeable to others. The flux of a given species is
calculated as a constant multipled by the drop in mass fraction across
the baffle.

The species mass-fraction condition requires the transfer constant and
the name of the patch on the other side of the baffle:

boundaryField
{
    // ...

    membraneA
    {
        type            semiPermeableBaffleMassFraction;
        samplePatch     membranePipe;
        c               0.1;
        value           uniform 0;
    }
    membraneB
    {
        type            semiPermeableBaffleMassFraction;
        samplePatch     membraneSleeve;
        c               0.1;
        value           uniform 1;
    }
}

If the value of c is omitted, or set to zero, then the patch is
considered impermeable to the species in question. The samplePatch entry
can also be omitted in this case.

The velocity condition does not require any special input:

boundaryField
{
    // ...

    membraneA
    {
        type            semiPermeableBaffleVelocity;
        value           uniform (0 0 0);
    }
    membraneB
    {
        type            semiPermeableBaffleVelocity;
        value           uniform (0 0 0);
    }
}

These two boundary conditions must be used in conjunction, and the
mass-fraction condition must be applied to all species in the
simulation. The calculation will fail with an error message if either is
used in isolation.

A tutorial, combustion/reactingFoam/RAS/membrane, has been added which
demonstrates this transfer process.

This work was done with support from Stefan Lipp, at BASF.
2017-10-19 11:51:38 +01:00
56ed10b666 DPMFoam, MPPICFoam: Renamed alphaPhic -> alphaPhi.<continuous phase name>
for consistency with multiphase solvers and compatibility with the generalized
TurbulenceModels library.
2017-10-11 23:04:42 +01:00
f18ffee22e tutorials: Put the foamyHexMesh flange tutorial back in the test loop 2017-10-06 11:46:33 +01:00
50912f87cf engineFoam: Renamed engineFoam -> XiEngineFoam and sprayEngineFoam -> engineFoam
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.

engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
2017-09-19 17:01:54 +01:00
24a06d3bae Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2017-09-19 09:31:29 +01:00
04d5f803b9 engineTime: Generalized to provide run-time selection of piston-motion
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.

Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
2017-09-19 09:26:26 +01:00
85cdd78143 foamyHexMesh: Corrected surface utility calls in mixerVessel tutorial 2017-09-19 08:38:37 +01:00
cd4d486f14 planarCouette tutorial: fixed permissions on Allrun/clean scripts 2017-09-16 13:35:02 +01:00
f53f52a691 createPatch: writing the cyclic match OBJ files is now optional
The new optional switch 'writeCyclicMatch' can be set to 'true' to enable the writing of
the cyclic match OBJ files; defaults to 'false'.

Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=2685
2017-09-09 23:00:27 +01:00
7dc61879a6 sixDoFRigidBodyState: New functionObject which writes the rigid-body state
Based on code contributed by SeongMo Yeon
Resolves feature request https://bugs.openfoam.org/view.php?id=2656
2017-09-09 19:00:56 +01:00
30602652da tutorials/multiphase/interFoam/laminar/wave: Consistency updates 2017-09-08 14:58:18 +01:00
7d9a91661c MPPIC: Standardised cyclone tutorial scripts 2017-09-04 12:01:29 +01:00
82675f0976 Merged reactingParcelFilmFoam into reactingParcelFoam
The combined solver includes the most advanced and general functionality from
each solver including:

    Continuous phase
    Lagrangian multiphase parcels
    Optional film
    Continuous and Lagrangian phase reactions
    Radiation
    Strong buoyancy force support by solving for p_rgh

The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
2017-08-29 09:33:45 +01:00
531cab4ccb reactingParcelFilmFoam: Updated to use rhoThermo rather than psiThermo
for generality and consistency with reactingParcelFoam
2017-08-24 14:28:55 +01:00
c2d8052e1c cloudSolution: Check consistency between the transient option
and the continuous-phase simulation type

For LTS and steady-state simulations the transient option does not need to be
provided as only steady-state tracking is appropriate.  For transient running
the Lagrangian tracking may be steady or transient.
2017-08-22 13:58:25 +01:00
d800287447 tutorials/incompressible/porousSimpleFoam/straightDuctImplicit: Only run if FOAMY_HEX_MESH set 2017-07-25 23:05:44 +01:00
793aa95738 tutorials/mesh/foamy.*Mesh::Allrun: Only run if FOAMY_HEX_MESH set 2017-07-25 17:37:06 +01:00
53a524a280 Simplified scalar(0.0) -> scalar(0) and scalar(1.0) -> scalar(1) 2017-07-21 17:37:37 +01:00
8c5f4b36f8 tutorials: updated triSurface entries to logical format
supported by commit 80e22788e4
2017-07-13 12:47:34 -05:00
7c301dbff4 Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
b18b6e5568 tutorials/heatTransfer/chtMultiRegionFoam/multiRegionHeater: Corrected Allclean
Resolves bug-report https://bugs.openfoam.org/view.php?id=2597
2017-06-29 16:49:36 +01:00
e8daaa5c76 compressibleInterFoam: Improved mass conservation
using the continuity error correction formulation developed for
twoPhaseEulerFoam and reactingEulerFoam.
2017-06-22 14:42:36 +01:00
faa1ae242d tutorials/basic/potentialFoam: Changed "streamFunction" to "postProcess
-func streamFunction"
2017-06-05 11:47:18 +01:00
52482e5b8f fvDOM: renamed "convergence" -> "tolerance" for consistency with the rest of OpenFOAM
Maintains optional "convergence" keyword for backward-compatibility.
2017-05-31 23:12:54 +01:00
59bd947516 pressureControl: Enable max and min limits only if specified
The calculation of the max and min limits are now only performed if required,
i.e. specified in fvSolution.

Also resolves bug-report https://bugs.openfoam.org/view.php?id=2566
2017-05-31 10:35:05 +01:00
07a7513fae tutorials: interDyMFoam: Added DTCHull case with waves. This case has a
reduced mesh size and simulation time in comparison with the other
DTCHull cases, so the results will not be as accurate.
2017-05-31 10:09:14 +01:00
2aa78c6db3 tutorials: interFoam: Added 2D wave propagation case 2017-05-31 10:09:14 +01:00
79ff91350e rhoPimpleFoam: Improved support for compressible liquids
See tutorials/compressible/rhoPimpleFoam/RAS/squareBendLiq for exapmle

pimpleControl: Added SIMPLErho option for running in SIMPLE mode

with large time-step/Courant number and relaxation.  With this option the
density is updated from thermodynamics rather than continuity after the pressure
equation which is better behaved if pressure is relaxed and/or solved to a
loose relative tolerance.  The need for this option is demonstrated in the
tutorials/compressible/rhoPimpleFoam/RAS/angledDuct tutorial which is unstable
without the option.
2017-05-17 17:05:43 +01:00
da6b1bf361 Surface utilities: standardised argument naming and ordering
for input and output surface files
2017-05-12 14:43:10 +01:00
130b051b54 tutorials/multiphase/interDyMFoam/RAS/DTCHull: Resolve stability issue caused by improvements to MULES 2017-05-08 22:44:14 +01:00
cd6dc3eb55 tutorials/combustion/reactingFoam/RAS/SandiaD_LTS/system/decomposeParDict: removed 2017-05-08 17:03:30 +01:00
c9a6995082 tutorials/lagrangian: Added mixedVesselAMI2D
This tutorial demonstrates moving mesh and AMI with a Lagrangian cloud.
It is very slow, as interaction lists (required to compute collisions)
are not optimised for moving meshes. The simulation time has therefore
been made very short, so that it finishes in a reasonable time. The
mixer only completes a small fraction of a rotation in this time. This
is still sufficient to test tracking and collisions in the presence of
AMI and mesh motion.

In order to generate a convincing animation, however, the end time must
be increased and the simulation run for a number of days.
2017-04-28 11:00:31 +01:00
371762757d Lagrangian: Rewrite of the particle tracking algorithm to function in
terms of the local barycentric coordinates of the current tetrahedron,
rather than the global coordinate system.

Barycentric tracking works on any mesh, irrespective of mesh quality.
Particles do not get "lost", and tracking does not require ad-hoc
"corrections" or "rescues" to function robustly, because the calculation
of particle-face intersections is unambiguous and reproducible, even at
small angles of incidence.

Each particle position is defined by topology (i.e. the decomposed tet
cell it is in) and geometry (i.e. where it is in the cell). No search
operations are needed on restart or reconstruct, unlike when particle
positions are stored in the global coordinate system.

The particle positions file now contains particles' local coordinates
and topology, rather than the global coordinates and cell. This change
to the output format is not backwards compatible. Existing cases with
Lagrangian data will not restart, but they will still run from time
zero without any modification. This change was necessary in order to
guarantee that the loaded particle is valid, and therefore
fundamentally prevent "loss" and "search-failure" type bugs (e.g.,
2517, 2442, 2286, 1836, 1461, 1341, 1097).

The tracking functions have also been converted to function in terms
of displacement, rather than end position. This helps remove floating
point error issues, particularly towards the end of a tracking step.

Wall bounded streamlines have been removed. The implementation proved
incompatible with the new tracking algorithm. ParaView has a surface
LIC plugin which provides equivalent, or better, functionality.

Additionally, bug report <https://bugs.openfoam.org/view.php?id=2517>
is resolved by this change.
2017-04-28 09:25:10 +01:00
0a32d8a11e tutorials/mesh/blockMesh/pipe: Corrected constant/triSurface -> constant/geometry 2017-04-20 12:51:23 +01:00