Checking a pair contains a particular phase and adding a contribution from the
"other" phase can now be written:
if (pair.contains(phase))
{
const phaseModel& otherPhase = pair.other(phase);
phiHbyAs[phasei] +=
fvc::interpolate(rAUs[phasei]*K)
*MRF.absolute(otherPhase.phi());
HbyAs[phasei] += rAUs[phasei]*K*otherPhase.U();
}
which previously would have been written as a loop over the pair and excluding
self reference:
const phaseModel* phase1 = &pair.phase1();
const phaseModel* phase2 = &pair.phase2();
forAllConstIter(phasePair, pair, iter)
{
if (phase1 == &phase)
{
phiHbyAs[phasei] +=
fvc::interpolate(rAUs[phasei]*K)
*MRF.absolute(phase2->phi());
HbyAs[phasei] += rAUs[phasei]*K*phase2->U();
}
Swap(phase1, phase2);
}
This patch enables the reactingEulerFoam solvers to simulate polydisperse flow
situations, i.e. flows where the disperse phase is subject to a size
distribution.
The newly added populationBalanceModel class solves the integro-partial
differential population balance equation (PBE) by means of a class method, also
called discrete or sectional method. This approach is based on discretizing the
PBE over its internal coordinate, the particle volume. This yields a set of
transport equations for the number concentration of particles in classes with a
different representative size. These are coupled through their source-terms and
solved in a segregated manner. The implementation is done in a way, that the
total particle number and mass is preserved for coalescence, breakup and drift
(i.e. isothermal growth or phase change) processes, irrespective of the chosen
discretization over the internal coordinate.
A population balance can be split over multiple velocity (temperature) fields,
using the capability of reactingMultiphaseEulerFoam to solve for n momentum
(energy) equations. To a certain degree, this takes into account the dependency
of heat- and momentum transfer on the disperse phase diameter. It is also possible
to define multiple population balances, e.g. bubbles and droplets simultaneously.
The functionality can be switched on by choosing the appropriate phaseSystem
type, e.g. populationBalanceMultiphaseSystem and the newly added diameterModel
class called velocityGroup. To illustrate the use of the functionality, a
bubbleColumnPolydisperse tutorial was added for reactingTwoPhaseEulerFoam and
reactingMultiphaseEulerFoam.
Furthermore, a reactingEulerFoam-specific functionObject called sizeDistribution
was added to allow post-Processing of the size distribution, e.g. to obtain the
number density function in a specific region.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
- Thermal phase change and wall boiling functionality has been generalized to
support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
simultaneous mass transfer mechanisms. For example, combination of thermal phase
and inhomogeneous population balance models.
Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
Thermo and reaction thermo macros have been renamed and refactored. If
the name is plural (make???Thermos) then it adds the model to all
selection tables. If not (make???Thermo) then it only adds to the
requested psi or rho table.
A pureMixture can now be specified in a reacting solver. This further
enhances compatibility between non-reacting and reacting solvers.
To achieve this, mixtures now have a typeName function of the same form
as the lower thermodyanmic models. In addition, to avoid name clashes,
the reacting thermo make macros have been split into those that create
entries on multiple selection tables, and those that just add to the
reaction thermo table.
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
The absolute value of the the time has been added to the rigid body
model state. This value is not directly necessary for calculating the
evolution of the rigid body system, it just facilitates the
implementation of sub-models which are in some way time-dependent.
The face-based momentum equation formulation introduced to twoPhaseEulerFoam by
commit 16f03f8a39 has proven particularly valuable
for bubbly flow simulations. The formulation is also available for
reactingTwoPhaseEulerFoam and this patch adds the the same capability to
reactingMultiphaseEulerFoam.
It be switched on by setting the optional faceMomentum entry in the PIMPLE
sub-dictionary in fvSolution:
PIMPLE
{
nOuterCorrectors 3;
nCorrectors 1;
nNonOrthogonalCorrectors 0;
faceMomentum yes;
}
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
for incompressible flow simulated using simpleFoam, pimpleFoam or pisoFoam.
Description
Calculates and write the estimated incompressible flow heat transfer
coefficient at wall patches as the volScalarField field
'wallHeatTransferCoeff'.
All wall patches are included by default; to restrict the calculation to
certain patches, use the optional 'patches' entry.
Example of function object specification:
wallHeatTransferCoeff1
{
type wallHeatTransferCoeff;
libs ("libfieldFunctionObjects.so");
...
region fluid;
patches (".*Wall");
rho 1.225;
Cp 1005;
Prl 0.707;
Prt 0.9;
}
Usage
Property | Description | Required | Default value
type | Type name: wallHeatTransferCoeff | yes |
patches | List of patches to process | no | all wall patches
region | Region to be evaluated | no | default region
rho | Fluid density | yes |
Cp | Fluid heat capacity | yes |
Prl | Fluid laminar Prandtl number | yes |
Prt | Fluid turbulent Prandtl number| yes |
Note
Writing field 'wallHeatTransferCoeff' is done by default, but it can be
overridden by defining an empty \c objects list. For details see
writeLocalObjects.
This generalizes and replaces the previous "noBanner" option provided by argList
and is extended to include the messages printed by Time.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2782