Commit Graph

196 Commits

Author SHA1 Message Date
46704f121b interFoam: Merged dynamic mesh functionality of interDyMFoam into interFoam
and replaced interDyMFoam with a script which reports this change.

The interDyMFoam tutorials have been moved into the interFoam directory.

This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.

Henry G. Weller
CFD Direct Ltd.
2017-11-30 23:56:42 +00:00
7d6b1be4b3 pimpleFoam, rhoPimpleFoam, interDyMFoam: Rationalized mesh-motion support
Added support for mesh-motion update within PIMPLE loop in pimpleFoam and rhoPimpleFoam.
2017-11-30 13:07:42 +00:00
4b5a10d167 compressibleInterFoam family: merged two-phase momentum stress modelling from compressibleInterPhaseTransportFoam
The new momentum stress model selector class
compressibleInterPhaseTransportModel is now used to select between the options:

Description
    Transport model selection class for the compressibleInterFoam family of
    solvers.

    By default the standard mixture transport modelling approach is used in
    which a single momentum stress model (laminar, non-Newtonian, LES or RAS) is
    constructed for the mixture.  However if the \c simulationType in
    constant/turbulenceProperties is set to \c twoPhaseTransport the alternative
    Euler-Euler two-phase transport modelling approach is used in which separate
    stress models (laminar, non-Newtonian, LES or RAS) are instantiated for each
    of the two phases allowing for different modeling for the phases.

Mixture and two-phase momentum stress modelling is now supported in
compressibleInterFoam, compressibleInterDyMFoam and compressibleInterFilmFoam.
The prototype compressibleInterPhaseTransportFoam solver is no longer needed and
has been removed.
2017-11-14 10:03:20 +00:00
e98f0b6ce3 tutorials/multiphase/compressibleInterPhaseTransportFoam/climbingRod: Improved stability
for a wider range of phase initialization.
2017-11-09 15:04:18 +00:00
eea9f8dd86 tutorials/multiphase/multiphaseInterDyMFoam/laminar/mixerVesselAMI2D: Removed
This tutorial is not currently run due to conservation issues with AMI
2017-11-08 10:31:28 +00:00
6c8102bd9a climbingRod tutorial: added case information in README 2017-11-03 17:59:41 +00:00
04b562cd7a climbingRod tutorial: renamed fluid phase -> liquid 2017-11-01 10:00:30 +00:00
6b023ff9ac climbingRod tutorial: adjusted setFields box
so it does not coincide with cell centres
2017-11-01 09:23:26 +00:00
c3c777ee08 climbingRod tutorial: renamed water phase -> fluid 2017-11-01 09:21:37 +00:00
e96e40bb6c compressibleInterPhaseTransportFoam: New variant of compressibleInterFoam supporting separate phase stress models
In this version of compressibleInterFoam separate stress models (laminar,
non-Newtonian, LES or RAS) are instantiated for each of the two phases allowing
for completely different modeling for the phases.

e.g. in the climbingRod tutorial case provided a Newtonian laminar model is
instantiated for the air and a Maxwell non-Newtonian model is instantiated for
the viscoelastic liquid.  To stabilize the Maxwell model in regions where the
liquid phase-fraction is 0 the new symmTensorPhaseLimitStabilization fvOption is
applied.

Other phase stress modeling combinations are also possible, e.g. the air may be
turbulent but the liquid laminar and an RAS or LES model applied to the air
only.  However, to stabilize this combination a suitable fvOption would need to
be applied to the turbulence properties where the air phase-fraction is 0.

Henry G. Weller, Chris Greenshields
CFD Direct Ltd.
2017-10-30 09:36:43 +00:00
f53f52a691 createPatch: writing the cyclic match OBJ files is now optional
The new optional switch 'writeCyclicMatch' can be set to 'true' to enable the writing of
the cyclic match OBJ files; defaults to 'false'.

Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=2685
2017-09-09 23:00:27 +01:00
30602652da tutorials/multiphase/interFoam/laminar/wave: Consistency updates 2017-09-08 14:58:18 +01:00
8c5f4b36f8 tutorials: updated triSurface entries to logical format
supported by commit 80e22788e4
2017-07-13 12:47:34 -05:00
e8daaa5c76 compressibleInterFoam: Improved mass conservation
using the continuity error correction formulation developed for
twoPhaseEulerFoam and reactingEulerFoam.
2017-06-22 14:42:36 +01:00
07a7513fae tutorials: interDyMFoam: Added DTCHull case with waves. This case has a
reduced mesh size and simulation time in comparison with the other
DTCHull cases, so the results will not be as accurate.
2017-05-31 10:09:14 +01:00
2aa78c6db3 tutorials: interFoam: Added 2D wave propagation case 2017-05-31 10:09:14 +01:00
130b051b54 tutorials/multiphase/interDyMFoam/RAS/DTCHull: Resolve stability issue caused by improvements to MULES 2017-05-08 22:44:14 +01:00
9801c25788 The "<type>Coeffs" sub-dictionary is now optional for most model parameters
except turbulence and lagrangian which will also be updated shortly.

For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:

transportModel  CrossPowerLaw;

CrossPowerLawCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  0.01;
    nuInf       [0 2 -1 0 0 0 0]  10;
    m           [0 0 1 0 0 0 0]   0.4;
    n           [0 0 0 0 0 0 0]   3;
}

BirdCarreauCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  1e-06;
    nuInf       [0 2 -1 0 0 0 0]  1e-06;
    k           [0 0 1 0 0 0 0]   0;
    n           [0 0 0 0 0 0 0]   1;
}

which allows a quick change between models, or using the simpler

transportModel  CrossPowerLaw;

nu0         [0 2 -1 0 0 0 0]  0.01;
nuInf       [0 2 -1 0 0 0 0]  10;
m           [0 0 1 0 0 0 0]   0.4;
n           [0 0 0 0 0 0 0]   3;

if quick switching between models is not required.

To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from

    // Seeding method.
    seedSampleSet   uniform;  //cloud; //triSurfaceMeshPointSet;

    uniformCoeffs
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

to the simpler

    // Seeding method.
    seedSampleSet
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

which also support the "<type>Coeffs" form

    // Seeding method.
    seedSampleSet
    {
        type        uniform;

        uniformCoeffs
        {
            axis        x;  //distance;

            // Note: tracks slightly offset so as not to be on a face
            start       (-1.001 -0.05 0.0011);
            end         (-1.001 -0.05 1.0011);
            nPoints     20;
        }
    }
2017-04-20 09:14:48 +01:00
d96a221b31 Admin: fixed file permissions from wall boiling model refinements 2017-04-16 18:27:19 +01:00
e3c67dc111 fvOptions: The "<type>Coeffs" sub-dictionary is now optional
For example the actuationDiskSource fvOption may now be specified

disk1
{
    type            actuationDiskSource;

    fields      (U);

    selectionMode   cellSet;
    cellSet         actuationDisk1;
    diskDir         (1 0 0);    // Orientation of the disk
    Cp              0.386;
    Ct              0.58;
    diskArea        40;
    upstreamPoint   (581849 4785810 1065);
}

rather than

disk1
{
    type            actuationDiskSource;
    active          on;

    actuationDiskSourceCoeffs
    {
        fields      (U);

        selectionMode   cellSet;
        cellSet         actuationDisk1;
        diskDir         (1 0 0);    // Orientation of the disk
        Cp              0.386;
        Ct              0.58;
        diskArea        40;
        upstreamPoint   (581849 4785810 1065);
    }
}

but this form is supported for backward compatibility.
2017-04-13 13:30:17 +01:00
0fa88b8de4 tutorials/multiphase/reactingTwoPhaseEulerFoam/laminar/steamInjection: Improved stability
Main changes in the tutorial:
  - General cleanup of the phaseProperties of unnecessary entries
  - sensibleEnthalpy is used for both phases
  - setTimeStep functionObject is used to set a sharp reduction in time step near the start of the injection
  - Monitoring of pressure minimum and maximum

Patch contributed by Juho Peltola, VTT.
2017-04-11 20:48:32 +01:00
76579f5814 surfaceTensionModels::liquidProperties: New temperature-dependent surface tension model
Description
    Temperature-dependent surface tension model in which the surface tension
    function provided by the phase Foam::liquidProperties class is used.

Usage
    \table
        Property     | Description               | Required    | Default value
        phase        | Phase name                | yes         |
    \endtable

    Example of the surface tension specification:
    \verbatim
        sigma
        {
            type    liquidProperties;
            phase   water;
        }
    \endverbatim

for use with e.g. compressibleInterFoam, see
tutorials/multiphase/compressibleInterFoam/laminar/depthCharge2D
2017-04-05 14:36:11 +01:00
79a050573b tutorials/multiphase: Removed unnecessary specification of name and dimensions for transport properties 2017-03-31 17:11:30 +01:00
cf0b6126d0 surfaceTensionModels: New class hierarchy for run-time selectable surface tension models
These models have been particularly designed for use in the VoF solvers, both
incompressible and compressible.  Currently constant and temperature dependent
surface tension models are provided but it easy to write models in which the
surface tension is evaluated from any fields held by the mesh database.
2017-03-31 14:32:38 +01:00
244109d2f8 sloshingCylinder tutorial: sloshing in cylinder under zero gravity
Demonstrates meshing a cylinder with hemispehrical ends using snappyHexMesh with
a polar background mesh that uses the point and edge projection feature of blockMesh.
The case prescribes a multiMotion on the cylinder, combining an oscillatingLinearMotion
and transverse rotatingMotion.
2017-03-24 14:44:41 +00:00
1cf43717ab tutorials: moved laminar interDyMFoam examples into "laminar" directory 2017-03-24 12:33:37 +00:00
04876abedb Function1: Added "Ramp" to the names of the ramp functions to avoid conflict
with more general forms of those functions.
2017-03-18 17:10:48 +00:00
0ba6179f23 tutorials: Updated pcorr settings in fvSolution to provide pcorrFinal if required 2017-03-07 11:48:20 +00:00
cdec9b23b9 liquidThermo: rhoThermo instantiated on liquidProperties
This allows single, multi-phase and VoF compressible simulations to be performed
with the accurate thermophysical property functions for liquids provided by the
liquidProperty classes.  e.g. in the
multiphase/compressibleInterFoam/laminar/depthCharge2D tutorial water can now be
specified by

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    properties      liquid;
    energy          sensibleInternalEnergy;
}

mixture
{
    H2O;
}

as an alternative to the previous less accurate representation defined by

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    transport       const;
    thermo          hConst;
    equationOfState perfectFluid;
    specie          specie;
    energy          sensibleInternalEnergy;
}

mixture
{
    specie
    {
        molWeight   18.0;
    }
    equationOfState
    {
        R           3000;
        rho0        1027;
    }
    thermodynamics
    {
        Cp          4195;
        Hf          0;
    }
    transport
    {
        mu          3.645e-4;
        Pr          2.289;
    }
}

However the increase in accuracy of the new simpler and more convenient
specification and representation comes at a cost: the NSRDS functions used by
the liquidProperties classes are relatively expensive to evaluate and the
depthCharge2D case takes ~14% longer to run.
2017-02-19 16:44:00 +00:00
abc50e214c thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
1c8a0bdcb3 compressibleInterFoam: Completed LTS and semi-implicit MULES support
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.

The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
2017-02-09 17:31:57 +00:00
f3a347fd5b interDyMFoam: Reinstate alphaPhiCorr0 for moving meshes without topology change 2017-02-07 09:59:19 +00:00
6f338ed716 PaSR: Removed deprecated "turbulentReaction" switch
To run with laminar reaction rates choose the "laminar" combustion model rather
than setting "turbulentReaction no;" in the "PaSR" model.
2017-01-20 17:17:14 +00:00
ad92287afc Multi-phase solvers: Improved handling of inflow/outflow BCs in MULES
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.

Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
2017-01-17 22:43:47 +00:00
a5f3c25c06 tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoiling.*: Correct q entry
Patch contributed by Mattijs Janssens
2016-12-02 12:22:30 +00:00
2eac40eac6 dynamicMotionSolverListFvMesh: New mesh-motion solver supporting multiple moving regions
e.g. the motion of two counter-rotating AMI regions could be defined:

dynamicFvMesh   dynamicMotionSolverListFvMesh;

solvers
(
    rotor1
    {
        solver solidBody;

        cellZone        rotor1;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         6.2832; // rad/s
        }
    }

    rotor2
    {
        solver solidBody;

        cellZone        rotor2;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         -6.2832; // rad/s
        }
    }
);

Any combination of motion solvers may be selected but there is no special
handling of motion interaction; the motions are applied sequentially and
potentially cumulatively.

To support this new general framework the solidBodyMotionFvMesh and
multiSolidBodyMotionFvMesh dynamicFvMeshes have been converted into the
corresponding motionSolvers solidBody and multiSolidBody and the tutorials
updated to reflect this change e.g. the motion in the mixerVesselAMI2D tutorial
is now defined thus:

dynamicFvMesh   dynamicMotionSolverFvMesh;

solver solidBody;

solidBodyCoeffs
{
    cellZone        rotor;

    solidBodyMotionFunction  rotatingMotion;
    rotatingMotionCoeffs
    {
        origin        (0 0 0);
        axis          (0 0 1);
        omega         6.2832; // rad/s
    }
}
2016-12-01 15:57:15 +00:00
8726fa4f57 reactingTwoPhaseEulerFoam wallBoiling.* tutorials: only run start-up in test-mode 2016-10-11 08:44:36 +01:00
dd3cd529ba reactingTwoPhaseEulerFoam::IATE: Added phaseChange source
to handle the effect of condensation and evaporation on bubble size
2016-10-07 09:34:35 +01:00
164540eb3d reactingTwoPhaseEulerFoam::IATE: Added wallBoiling sub-model
to handle the size of bubbles created by boiling.  To be used in
conjunction with the alphatWallBoilingWallFunction boundary condition.

The IATE variant of the wallBoiling tutorial case is provided to
demonstrate the functionality:

tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/wallBoilingIATE
2016-10-06 12:40:58 +01:00
38b784244b tutorials/multiphase/reactingTwoPhaseEulerFoam: Initialize by first running without boiling
then restart with boiling.

Contributed by Juho Peltola, VTT
2016-10-04 16:39:49 +01:00
213e131d0f reactingTwoPhaseEulerFoam: Enhanced support for wall boiling
Contributed by Juho Peltola, VTT

Notable changes:

    1. The same wall function is now used for both phases, but user must
       specify phaseType ‘liquid’ or ‘vapor’

    2. Runtime selectable submodels for:
       - wall heat flux partitioning between the phases
       - nucleation site density
       - bubble departure frequency
       - bubble departure diameter

    3. An additional iteration loop for the wall boiling model in case
       the initial guess for the wall temperature proves to be poor.

The wallBoiling tutorial has been updated to demonstrate this new functionality.
2016-10-04 09:53:09 +01:00
10fb32db8d tutorials: Renamed sub-directories ras -> RAS and les -> LES 2016-09-20 19:03:40 +01:00
7b971a9ebf tutorials/multiphase/interFoam/ras/weirOverflow: Updated to improve robustness
Resolves bug-report http://bugs.openfoam.org/view.php?id=2236
2016-09-07 14:05:37 +01:00
c339d3018c PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
a7df748094 tutorials/multiphase/interDyMFoam/ras/DTCHull: Corrected specification of restraints
Resolves bug-report http://bugs.openfoam.org/view.php?id=2224
2016-09-03 21:14:17 +01:00
0f6fb1c07a functionObjects::surfaceFieldValue: New rational name for the surfaceRegion functionObject
surfaceRegion will be the name of a class to provide support for surface
region selection.
2016-08-12 10:04:11 +01:00
089b50696c tutorials/multiphase/reactingTwoPhaseEulerFoam: Corrected regular expressions
Resolves bug-report http://bugs.openfoam.org/view.php?id=2167
2016-08-01 17:11:44 +01:00
4ac9c54b46 tutorials/multiphase/interDyMFoam/ras/floatingObject/constant/dynamicMeshDict.sixDoF: Renamed 'rho' -> 'rhoSolid'
to avoid name clash
2016-07-29 17:47:20 +01:00
15ae296894 basicMultiComponentMixture: Improved the handling of Ydefault 2016-07-17 22:59:25 +01:00
a17d0d86dc tutorials: Updated formatting of dictionaries and specification of 'plane' and 'samplePlane' 2016-06-29 18:02:57 +01:00