Commit Graph

6 Commits

Author SHA1 Message Date
f6d24cf29f populationBalanceModel: Moved access function for continuous phase turbulence
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2018-05-16 21:36:34 +01:00
262ed2cd33 reactingEulerFoam/phaseSystems/populationBalanceModel: Rationalization of function names and documentation
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
2018-03-29 17:40:45 +01:00
6e143e5ab0 reactingEulerFoam: Added wall-boiling and phase change capability to populationBalance functionality
Introduced thermalPhaseChangePopulationBalanceTwo- and MultiphaseSystem as
user-selectable phaseSystems which are the first to actually use multiple mass
transfer mechanisms enabled by

commit d3a237f560.

The functionality is demonstrated using the reactingTwoPhaseEulerFoam
wallBoilingPolydisperse tutorial.

Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
2018-01-24 14:57:14 +00:00
504761e6c0 reactingEulerFoam: Improved documentation
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2018-01-22 17:19:55 +00:00
6a93b33e68 reactingEulerFoam: Corrected copyright dates of new files for populationBalance functionality
Patch contributed by HZDR
2018-01-01 20:15:22 +00:00
3e577d8515 reactingEulerFoam: Added population balance modeling capability
This patch enables the reactingEulerFoam solvers to simulate polydisperse flow
situations, i.e. flows where the disperse phase is subject to a size
distribution.

The newly added populationBalanceModel class solves the integro-partial
differential population balance equation (PBE) by means of a class method, also
called discrete or sectional method. This approach is based on discretizing the
PBE over its internal coordinate, the particle volume. This yields a set of
transport equations for the number concentration of particles in classes with a
different representative size. These are coupled through their source-terms and
solved in a segregated manner. The implementation is done in a way, that the
total particle number and mass is preserved for coalescence, breakup and drift
(i.e. isothermal growth or phase change) processes, irrespective of the chosen
discretization over the internal coordinate.

A population balance can be split over multiple velocity (temperature) fields,
using the capability of reactingMultiphaseEulerFoam to solve for n momentum
(energy) equations. To a certain degree, this takes into account the dependency
of heat- and momentum transfer on the disperse phase diameter. It is also possible
to define multiple population balances, e.g. bubbles and droplets simultaneously.

The functionality can be switched on by choosing the appropriate phaseSystem
type, e.g. populationBalanceMultiphaseSystem and the newly added diameterModel
class called velocityGroup. To illustrate the use of the functionality, a
bubbleColumnPolydisperse tutorial was added for reactingTwoPhaseEulerFoam and
reactingMultiphaseEulerFoam.

Furthermore, a reactingEulerFoam-specific functionObject called sizeDistribution
was added to allow post-Processing of the size distribution, e.g. to obtain the
number density function in a specific region.

Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
2017-12-31 19:59:47 +00:00