mirror of
https://github.com/OpenFOAM/OpenFOAM-6.git
synced 2025-12-08 06:57:46 +00:00
This is faster than the library functionality that it replaces, as it allows the compiler to do inlining. It also does not utilise any static state so generators do not interfere with each other. It is also faster than the the array lookup in cachedRandom. The cachedRandom class therefore offers no advantage over Random and has been removed.
293 lines
8.0 KiB
C
293 lines
8.0 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
Test-Distribution
|
|
|
|
Description
|
|
Test the Distribution class
|
|
|
|
Plot normal distribution test in gnuplot using:
|
|
|
|
\verbatim
|
|
normalDistribution(mean, sigma, x) = \
|
|
sqrt(1.0/(2.0*pi*sigma**2))*exp(-(x - mean)**2.0/(2.0*sigma**2))
|
|
|
|
plot normalDistribution(8.5, 2.5, x), "Distribution_scalar_test_x" w p
|
|
\endverbatim
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "vector.H"
|
|
#include "labelVector.H"
|
|
#include "tensor.H"
|
|
#include "Distribution.H"
|
|
#include "Random.H"
|
|
#include "dimensionedTypes.H"
|
|
#include "argList.H"
|
|
#include "PstreamReduceOps.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
using namespace Foam;
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#include "setRootCase.H"
|
|
|
|
Random R(918273);
|
|
|
|
{
|
|
// scalar
|
|
label randomDistributionTestSize = 50000000;
|
|
|
|
Distribution<scalar> dS(scalar(5e-2));
|
|
|
|
Info<< nl << "Distribution<scalar>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from a standard normal distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dS.add(2.5*R.scalarNormal() + 8.5);
|
|
}
|
|
|
|
Info<< "Mean " << dS.mean() << nl
|
|
<< "Median " << dS.median()
|
|
<< endl;
|
|
|
|
dS.write("Distribution_scalar_test_1");
|
|
|
|
Distribution<scalar> dS2(scalar(1e-2));
|
|
|
|
Info<< nl << "Distribution<scalar>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from a standard normal distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dS2.add(1.5*R.scalarNormal() -6.0);
|
|
}
|
|
|
|
Info<< "Mean " << dS2.mean() << nl
|
|
<< "Median " << dS2.median()
|
|
<< endl;
|
|
|
|
dS2.write("Distribution_scalar_test_2");
|
|
|
|
Info<< nl << "Adding previous two Distribution<scalar>" << endl;
|
|
|
|
dS = dS + dS2;
|
|
|
|
dS.write("Distribution_scalar_test_1+2");
|
|
}
|
|
|
|
if (Pstream::parRun())
|
|
{
|
|
// scalar in parallel
|
|
label randomDistributionTestSize = 100000000;
|
|
|
|
Distribution<scalar> dS(scalar(1e-1));
|
|
|
|
Pout<< "Distribution<scalar>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from uniform distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dS.add(R.scalar01() + 10*Pstream::myProcNo());
|
|
}
|
|
|
|
Pout<< "Mean " << dS.mean() << nl
|
|
<< "Median " << dS.median()
|
|
<< endl;
|
|
|
|
reduce(dS, sumOp<Distribution<scalar>>());
|
|
|
|
if (Pstream::master())
|
|
{
|
|
Info<< "Reducing parallel Distribution<scalar>" << nl
|
|
<< "Mean " << dS.mean() << nl
|
|
<< "Median " << dS.median()
|
|
<< endl;
|
|
|
|
dS.write("Distribution_scalar_test_parallel_reduced");
|
|
}
|
|
}
|
|
|
|
{
|
|
// vector
|
|
Distribution<vector> dV(vector(0.1, 0.05, 0.15));
|
|
|
|
label randomDistributionTestSize = 1000000;
|
|
|
|
Info<< nl << "Distribution<vector>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from uniform and a standard normal distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dV.add(R.sample01<vector>());
|
|
|
|
// Adding separate standard normal components with component
|
|
// weights
|
|
|
|
dV.add
|
|
(
|
|
vector
|
|
(
|
|
R.scalarNormal()*3.0 + 1.5,
|
|
R.scalarNormal()*0.25 + 4.0,
|
|
R.scalarNormal()*3.0 - 1.5
|
|
),
|
|
vector(1.0, 2.0, 5.0)
|
|
);
|
|
}
|
|
|
|
Info<< "Mean " << dV.mean() << nl
|
|
<< "Median " << dV.median()
|
|
<< endl;
|
|
|
|
dV.write("Distribution_vector_test");
|
|
}
|
|
|
|
// {
|
|
// // labelVector
|
|
// Distribution<labelVector> dLV(labelVector::one*10);
|
|
|
|
// label randomDistributionTestSize = 2000000;
|
|
|
|
// Info<< nl << "Distribution<labelVector>" << nl
|
|
// << "Sampling "
|
|
// << randomDistributionTestSize
|
|
// << " times from uniform distribution."
|
|
// << endl;
|
|
|
|
// for (label i = 0; i < randomDistributionTestSize; i++)
|
|
// {
|
|
// dLV.add
|
|
// (
|
|
// labelVector
|
|
// (
|
|
// R.sampleAB<label>(-1000, 1001),
|
|
// R.sampleAB<label>(-5000, 5001),
|
|
// R.sampleAB<label>(-2000, 7001)
|
|
// )
|
|
// );
|
|
// }
|
|
|
|
// Info<< "Mean " << dLV.mean() << nl
|
|
// << "Median " << dLV.median()
|
|
// << endl;
|
|
|
|
// dLV.write("Distribution_labelVector_test");
|
|
// }
|
|
|
|
{
|
|
// tensor
|
|
Distribution<tensor> dT(tensor::one*1e-2);
|
|
|
|
label randomDistributionTestSize = 2000000;
|
|
|
|
Info<< nl << "Distribution<tensor>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from uniform distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dT.add(R.sample01<tensor>());
|
|
}
|
|
|
|
Info<< "Mean " << dT.mean() << nl
|
|
<< "Median " << dT.median()
|
|
<< endl;
|
|
|
|
dT.write("Distribution_tensor_test");
|
|
}
|
|
|
|
{
|
|
// symmTensor
|
|
Distribution<symmTensor> dSyT(symmTensor::one*1e-2);
|
|
|
|
label randomDistributionTestSize = 2000000;
|
|
|
|
Info<< nl << "Distribution<symmTensor>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from uniform distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dSyT.add(R.sample01<symmTensor>());
|
|
}
|
|
|
|
Info<< "Mean " << dSyT.mean() << nl
|
|
<< "Median " << dSyT.median()
|
|
<< endl;
|
|
|
|
dSyT.write("Distribution_symmTensor_test");
|
|
}
|
|
|
|
{
|
|
// sphericalTensor
|
|
Distribution<sphericalTensor> dSpT(sphericalTensor::one*1e-2);
|
|
|
|
label randomDistributionTestSize = 50000000;
|
|
|
|
Info<< nl << "Distribution<sphericalTensor>" << nl
|
|
<< "Sampling "
|
|
<< randomDistributionTestSize
|
|
<< " times from uniform distribution."
|
|
<< endl;
|
|
|
|
for (label i = 0; i < randomDistributionTestSize; i++)
|
|
{
|
|
dSpT.add(R.sample01<sphericalTensor>());
|
|
}
|
|
|
|
Info<< "Mean " << dSpT.mean() << nl
|
|
<< "Median " << dSpT.median()
|
|
<< endl;
|
|
|
|
dSpT.write("Distribution_sphericalTensor_test");
|
|
}
|
|
|
|
Info<< nl << "End" << nl << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|