Files
OpenFOAM-6/applications/test/Distribution/Test-Distribution.C
Will Bainbridge 002e7d7b06 Random: Replaced drand48 with an in-class implementation
This is faster than the library functionality that it replaces, as it
allows the compiler to do inlining. It also does not utilise any static
state so generators do not interfere with each other. It is also faster
than the the array lookup in cachedRandom. The cachedRandom class
therefore offers no advantage over Random and has been removed.
2018-06-11 11:01:11 +01:00

293 lines
8.0 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-Distribution
Description
Test the Distribution class
Plot normal distribution test in gnuplot using:
\verbatim
normalDistribution(mean, sigma, x) = \
sqrt(1.0/(2.0*pi*sigma**2))*exp(-(x - mean)**2.0/(2.0*sigma**2))
plot normalDistribution(8.5, 2.5, x), "Distribution_scalar_test_x" w p
\endverbatim
\*---------------------------------------------------------------------------*/
#include "vector.H"
#include "labelVector.H"
#include "tensor.H"
#include "Distribution.H"
#include "Random.H"
#include "dimensionedTypes.H"
#include "argList.H"
#include "PstreamReduceOps.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
int main(int argc, char *argv[])
{
#include "setRootCase.H"
Random R(918273);
{
// scalar
label randomDistributionTestSize = 50000000;
Distribution<scalar> dS(scalar(5e-2));
Info<< nl << "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from a standard normal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(2.5*R.scalarNormal() + 8.5);
}
Info<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
dS.write("Distribution_scalar_test_1");
Distribution<scalar> dS2(scalar(1e-2));
Info<< nl << "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from a standard normal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS2.add(1.5*R.scalarNormal() -6.0);
}
Info<< "Mean " << dS2.mean() << nl
<< "Median " << dS2.median()
<< endl;
dS2.write("Distribution_scalar_test_2");
Info<< nl << "Adding previous two Distribution<scalar>" << endl;
dS = dS + dS2;
dS.write("Distribution_scalar_test_1+2");
}
if (Pstream::parRun())
{
// scalar in parallel
label randomDistributionTestSize = 100000000;
Distribution<scalar> dS(scalar(1e-1));
Pout<< "Distribution<scalar>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(R.scalar01() + 10*Pstream::myProcNo());
}
Pout<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
reduce(dS, sumOp<Distribution<scalar>>());
if (Pstream::master())
{
Info<< "Reducing parallel Distribution<scalar>" << nl
<< "Mean " << dS.mean() << nl
<< "Median " << dS.median()
<< endl;
dS.write("Distribution_scalar_test_parallel_reduced");
}
}
{
// vector
Distribution<vector> dV(vector(0.1, 0.05, 0.15));
label randomDistributionTestSize = 1000000;
Info<< nl << "Distribution<vector>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform and a standard normal distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dV.add(R.sample01<vector>());
// Adding separate standard normal components with component
// weights
dV.add
(
vector
(
R.scalarNormal()*3.0 + 1.5,
R.scalarNormal()*0.25 + 4.0,
R.scalarNormal()*3.0 - 1.5
),
vector(1.0, 2.0, 5.0)
);
}
Info<< "Mean " << dV.mean() << nl
<< "Median " << dV.median()
<< endl;
dV.write("Distribution_vector_test");
}
// {
// // labelVector
// Distribution<labelVector> dLV(labelVector::one*10);
// label randomDistributionTestSize = 2000000;
// Info<< nl << "Distribution<labelVector>" << nl
// << "Sampling "
// << randomDistributionTestSize
// << " times from uniform distribution."
// << endl;
// for (label i = 0; i < randomDistributionTestSize; i++)
// {
// dLV.add
// (
// labelVector
// (
// R.sampleAB<label>(-1000, 1001),
// R.sampleAB<label>(-5000, 5001),
// R.sampleAB<label>(-2000, 7001)
// )
// );
// }
// Info<< "Mean " << dLV.mean() << nl
// << "Median " << dLV.median()
// << endl;
// dLV.write("Distribution_labelVector_test");
// }
{
// tensor
Distribution<tensor> dT(tensor::one*1e-2);
label randomDistributionTestSize = 2000000;
Info<< nl << "Distribution<tensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dT.add(R.sample01<tensor>());
}
Info<< "Mean " << dT.mean() << nl
<< "Median " << dT.median()
<< endl;
dT.write("Distribution_tensor_test");
}
{
// symmTensor
Distribution<symmTensor> dSyT(symmTensor::one*1e-2);
label randomDistributionTestSize = 2000000;
Info<< nl << "Distribution<symmTensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dSyT.add(R.sample01<symmTensor>());
}
Info<< "Mean " << dSyT.mean() << nl
<< "Median " << dSyT.median()
<< endl;
dSyT.write("Distribution_symmTensor_test");
}
{
// sphericalTensor
Distribution<sphericalTensor> dSpT(sphericalTensor::one*1e-2);
label randomDistributionTestSize = 50000000;
Info<< nl << "Distribution<sphericalTensor>" << nl
<< "Sampling "
<< randomDistributionTestSize
<< " times from uniform distribution."
<< endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dSpT.add(R.sample01<sphericalTensor>());
}
Info<< "Mean " << dSpT.mean() << nl
<< "Median " << dSpT.median()
<< endl;
dSpT.write("Distribution_sphericalTensor_test");
}
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //