Files
OpenFOAM-6/src/functionObjects/field/streamLine/streamLine.C
2018-04-13 01:11:20 +01:00

693 lines
18 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "Pstream.H"
#include "functionObjectList.H"
#include "streamLine.H"
#include "streamLineParticleCloud.H"
#include "ReadFields.H"
#include "meshSearch.H"
#include "sampledSet.H"
#include "globalIndex.H"
#include "mapDistribute.H"
#include "interpolationCellPoint.H"
#include "PatchTools.H"
#include "mapPolyMesh.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char*
NamedEnum<functionObjects::streamLine::trackDirection, 3>::names[] =
{"forward", "backward", "both"};
namespace functionObjects
{
defineTypeNameAndDebug(streamLine, 0);
addToRunTimeSelectionTable(functionObject, streamLine, dictionary);
const NamedEnum<streamLine::trackDirection, 3>
streamLine::trackDirectionNames_;
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::autoPtr<Foam::indirectPrimitivePatch>
Foam::functionObjects::streamLine::wallPatch() const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
label nFaces = 0;
forAll(patches, patchi)
{
if (isA<wallPolyPatch>(patches[patchi]))
{
nFaces += patches[patchi].size();
}
}
labelList addressing(nFaces);
nFaces = 0;
forAll(patches, patchi)
{
if (isA<wallPolyPatch>(patches[patchi]))
{
const polyPatch& pp = patches[patchi];
forAll(pp, i)
{
addressing[nFaces++] = pp.start()+i;
}
}
}
return autoPtr<indirectPrimitivePatch>
(
new indirectPrimitivePatch
(
IndirectList<face>
(
mesh_.faces(),
addressing
),
mesh_.points()
)
);
}
void Foam::functionObjects::streamLine::track()
{
IDLList<streamLineParticle> initialParticles;
streamLineParticleCloud particles
(
mesh_,
cloudName_,
initialParticles
);
const sampledSet& seedPoints = sampledSetPtr_();
forAll(seedPoints, i)
{
particles.addParticle
(
new streamLineParticle
(
mesh_,
seedPoints[i],
seedPoints.cells()[i],
lifeTime_
)
);
}
label nSeeds = returnReduce(particles.size(), sumOp<label>());
Info << " seeded " << nSeeds << " particles" << endl;
// Read or lookup fields
PtrList<volScalarField> vsFlds;
PtrList<interpolation<scalar>> vsInterp;
PtrList<volVectorField> vvFlds;
PtrList<interpolation<vector>> vvInterp;
label UIndex = -1;
label nScalar = 0;
label nVector = 0;
forAll(fields_, i)
{
if (mesh_.foundObject<volScalarField>(fields_[i]))
{
nScalar++;
}
else if (mesh_.foundObject<volVectorField>(fields_[i]))
{
nVector++;
}
else
{
FatalErrorInFunction
<< "Cannot find field " << fields_[i] << nl
<< "Valid scalar fields are:"
<< mesh_.names(volScalarField::typeName) << nl
<< "Valid vector fields are:"
<< mesh_.names(volVectorField::typeName)
<< exit(FatalError);
}
}
vsInterp.setSize(nScalar);
nScalar = 0;
vvInterp.setSize(nVector);
nVector = 0;
forAll(fields_, i)
{
if (mesh_.foundObject<volScalarField>(fields_[i]))
{
const volScalarField& f = mesh_.lookupObject<volScalarField>
(
fields_[i]
);
vsInterp.set
(
nScalar++,
interpolation<scalar>::New
(
interpolationScheme_,
f
)
);
}
else if (mesh_.foundObject<volVectorField>(fields_[i]))
{
const volVectorField& f = mesh_.lookupObject<volVectorField>
(
fields_[i]
);
if (f.name() == UName_)
{
UIndex = nVector;
}
vvInterp.set
(
nVector++,
interpolation<vector>::New
(
interpolationScheme_,
f
)
);
}
}
// Store the names
scalarNames_.setSize(vsInterp.size());
forAll(vsInterp, i)
{
scalarNames_[i] = vsInterp[i].psi().name();
}
vectorNames_.setSize(vvInterp.size());
forAll(vvInterp, i)
{
vectorNames_[i] = vvInterp[i].psi().name();
}
// Check that we know the index of U in the interpolators.
if (UIndex == -1)
{
FatalErrorInFunction
<< "Cannot find field to move particles with : " << UName_ << nl
<< "This field has to be present in the sampled fields " << fields_
<< " and in the objectRegistry."
<< exit(FatalError);
}
// Sampled data
// ~~~~~~~~~~~~
// Size to maximum expected sizes.
allTracks_.clear();
allTracks_.setCapacity(nSeeds);
allScalars_.setSize(vsInterp.size());
forAll(allScalars_, i)
{
allScalars_[i].clear();
allScalars_[i].setCapacity(nSeeds);
}
allVectors_.setSize(vvInterp.size());
forAll(allVectors_, i)
{
allVectors_[i].clear();
allVectors_[i].setCapacity(nSeeds);
}
// Additional particle info
streamLineParticle::trackingData td
(
particles,
vsInterp,
vvInterp,
UIndex, // index of U in vvInterp
trackDirection_ == trackDirection::FORWARD,
nSubCycle_, // automatic track control:step through cells in steps?
trackLength_, // fixed track length
allTracks_,
allScalars_,
allVectors_
);
// Set very large dt. Note: cannot use great since 1/great is small
// which is a trigger value for the tracking...
const scalar trackTime = Foam::sqrt(great);
// Track
if (trackDirection_ == trackDirection::BOTH)
{
initialParticles = particles;
}
particles.move(particles, td, trackTime);
if (trackDirection_ == trackDirection::BOTH)
{
particles.IDLList<streamLineParticle>::operator=(initialParticles);
td.trackForward_ = !td.trackForward_;
particles.move(particles, td, trackTime);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::streamLine::streamLine
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
dict_(dict),
nSubCycle_(0)
{
read(dict_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::streamLine::~streamLine()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::streamLine::read(const dictionary& dict)
{
if (dict != dict_)
{
dict_ = dict;
}
Info<< type() << " " << name() << ":" << nl;
dict.lookup("fields") >> fields_;
UName_ = dict.lookupOrDefault("U", word("U"));
if (findIndex(fields_, UName_) == -1)
{
FatalIOErrorInFunction(dict)
<< "Velocity field for tracking " << UName_
<< " should be present in the list of fields " << fields_
<< exit(FatalIOError);
}
// The trackForward entry is maintained here for backwards compatibility
if (!dict.found("direction") && dict.found("trackForward"))
{
trackDirection_ =
dict.lookupType<bool>("trackForward")
? trackDirection::FORWARD
: trackDirection::BACKWARD;
}
else
{
trackDirection_ = trackDirectionNames_[word(dict.lookup("direction"))];
}
dict.lookup("lifeTime") >> lifeTime_;
if (lifeTime_ < 1)
{
FatalErrorInFunction
<< "Illegal value " << lifeTime_ << " for lifeTime"
<< exit(FatalError);
}
bool subCycling = dict.found("nSubCycle");
bool fixedLength = dict.found("trackLength");
if (subCycling && fixedLength)
{
FatalIOErrorInFunction(dict)
<< "Cannot both specify automatic time stepping (through '"
<< "nSubCycle' specification) and fixed track length (through '"
<< "trackLength')"
<< exit(FatalIOError);
}
nSubCycle_ = 1;
if (dict.readIfPresent("nSubCycle", nSubCycle_))
{
trackLength_ = vGreat;
if (nSubCycle_ < 1)
{
nSubCycle_ = 1;
}
Info<< " automatic track length specified through"
<< " number of sub cycles : " << nSubCycle_ << nl << endl;
}
else
{
dict.lookup("trackLength") >> trackLength_;
Info<< " fixed track length specified : "
<< trackLength_ << nl << endl;
}
interpolationScheme_ = dict.lookupOrDefault
(
"interpolationScheme",
interpolationCellPoint<scalar>::typeName
);
cloudName_ = dict.lookupOrDefault<word>("cloudName", "streamLine");
meshSearchPtr_.reset(new meshSearch(mesh_));
sampledSetPtr_ = sampledSet::New
(
"seedSampleSet",
mesh_,
meshSearchPtr_(),
dict.subDict("seedSampleSet")
);
sampledSetAxis_ = sampledSetPtr_->axis();
scalarFormatterPtr_ = writer<scalar>::New(dict.lookup("setFormat"));
vectorFormatterPtr_ = writer<vector>::New(dict.lookup("setFormat"));
return true;
}
bool Foam::functionObjects::streamLine::execute()
{
return true;
}
bool Foam::functionObjects::streamLine::write()
{
Info<< type() << " " << name() << " write:" << nl;
const Time& runTime = obr_.time();
// Do all injection and tracking
track();
if (Pstream::parRun())
{
// Append slave tracks to master ones
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
globalIndex globalTrackIDs(allTracks_.size());
// Construct a distribution map to pull all to the master.
labelListList sendMap(Pstream::nProcs());
labelListList recvMap(Pstream::nProcs());
if (Pstream::master())
{
// Master: receive all. My own first, then consecutive
// processors.
label trackI = 0;
forAll(recvMap, proci)
{
labelList& fromProc = recvMap[proci];
fromProc.setSize(globalTrackIDs.localSize(proci));
forAll(fromProc, i)
{
fromProc[i] = trackI++;
}
}
}
labelList& toMaster = sendMap[0];
toMaster.setSize(globalTrackIDs.localSize());
forAll(toMaster, i)
{
toMaster[i] = i;
}
const mapDistribute distMap
(
globalTrackIDs.size(),
sendMap.xfer(),
recvMap.xfer()
);
// Distribute the track positions. Note: use scheduled comms
// to prevent buffering.
mapDistributeBase::distribute
(
Pstream::commsTypes::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allTracks_,
flipOp()
);
// Distribute the scalars
forAll(allScalars_, scalarI)
{
allScalars_[scalarI].shrink();
mapDistributeBase::distribute
(
Pstream::commsTypes::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allScalars_[scalarI],
flipOp()
);
allScalars_[scalarI].setCapacity(allScalars_[scalarI].size());
}
// Distribute the vectors
forAll(allVectors_, vectorI)
{
allVectors_[vectorI].shrink();
mapDistributeBase::distribute
(
Pstream::commsTypes::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allVectors_[vectorI],
flipOp()
);
allVectors_[vectorI].setCapacity(allVectors_[vectorI].size());
}
}
label n = 0;
forAll(allTracks_, trackI)
{
n += allTracks_[trackI].size();
}
Info<< " Tracks:" << allTracks_.size() << nl
<< " Total samples:" << n
<< endl;
// Massage into form suitable for writers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (Pstream::master() && allTracks_.size())
{
// Make output directory
fileName vtkPath
(
Pstream::parRun()
? runTime.path()/".."/"postProcessing"/"sets"/name()
: runTime.path()/"postProcessing"/"sets"/name()
);
if (mesh_.name() != fvMesh::defaultRegion)
{
vtkPath = vtkPath/mesh_.name();
}
vtkPath = vtkPath/mesh_.time().timeName();
vtkPath.clean();
mkDir(vtkPath);
// Convert track positions
PtrList<coordSet> tracks(allTracks_.size());
forAll(allTracks_, trackI)
{
tracks.set
(
trackI,
new coordSet
(
"track" + Foam::name(trackI),
sampledSetAxis_ //"xyz"
)
);
tracks[trackI].transfer(allTracks_[trackI]);
}
// Convert scalar values
if (allScalars_.size() > 0)
{
List<List<scalarField>> scalarValues(allScalars_.size());
forAll(allScalars_, scalarI)
{
DynamicList<scalarList>& allTrackVals =
allScalars_[scalarI];
scalarValues[scalarI].setSize(allTrackVals.size());
forAll(allTrackVals, trackI)
{
scalarList& trackVals = allTrackVals[trackI];
scalarValues[scalarI][trackI].transfer(trackVals);
}
}
fileName vtkFile
(
vtkPath
/ scalarFormatterPtr_().getFileName
(
tracks[0],
scalarNames_
)
);
Info<< " Writing data to " << vtkFile.path() << endl;
scalarFormatterPtr_().write
(
true, // writeTracks
tracks,
scalarNames_,
scalarValues,
OFstream(vtkFile)()
);
}
// Convert vector values
if (allVectors_.size() > 0)
{
List<List<vectorField>> vectorValues(allVectors_.size());
forAll(allVectors_, vectorI)
{
DynamicList<vectorList>& allTrackVals =
allVectors_[vectorI];
vectorValues[vectorI].setSize(allTrackVals.size());
forAll(allTrackVals, trackI)
{
vectorList& trackVals = allTrackVals[trackI];
vectorValues[vectorI][trackI].transfer(trackVals);
}
}
fileName vtkFile
(
vtkPath
/ vectorFormatterPtr_().getFileName
(
tracks[0],
vectorNames_
)
);
vectorFormatterPtr_().write
(
true, // writeTracks
tracks,
vectorNames_,
vectorValues,
OFstream(vtkFile)()
);
}
}
return true;
}
void Foam::functionObjects::streamLine::updateMesh(const mapPolyMesh& mpm)
{
if (&mpm.mesh() == &mesh_)
{
read(dict_);
}
}
void Foam::functionObjects::streamLine::movePoints(const polyMesh& mesh)
{
if (&mesh == &mesh_)
{
// Moving mesh affects the search tree
read(dict_);
}
}
// ************************************************************************* //