Files
OpenFOAM-6/applications/utilities/surface/surfaceHookUp/surfaceHookUp.C
Will Bainbridge 88a218ce84 treeBoundBox: Removed unecessary randomisation
Tree bound boxes are expanded asymmetrically to reduce the liklihood of
octree faces aliging with mesh faces and edges. The asymmetry is now
generated using hard-coded irrational numbers, rather than using a
random generator.

The asymmetry was effectively already hard coded. The random numbers are
only pseudo random, so the same numbers were being applied to the bound
boxes every time. This change simply removes the overhead of creating
the generator, and also gets rid of some duplicated code.
2018-06-11 11:01:11 +01:00

596 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2014-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceHookUp
Description
Find close open edges and stitches the surface along them
Usage
- surfaceHookUp hookDistance [OPTION]
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "triSurfaceMesh.H"
#include "indexedOctree.H"
#include "treeBoundBox.H"
#include "PackedBoolList.H"
#include "unitConversion.H"
#include "searchableSurfaces.H"
#include "IOdictionary.H"
using namespace Foam;
// Split facei along edgeI at position newPointi
void greenRefine
(
const triSurface& surf,
const label facei,
const label edgeI,
const label newPointi,
DynamicList<labelledTri>& newFaces
)
{
const labelledTri& f = surf.localFaces()[facei];
const edge& e = surf.edges()[edgeI];
// Find index of edge in face.
label fp0 = findIndex(f, e[0]);
label fp1 = f.fcIndex(fp0);
label fp2 = f.fcIndex(fp1);
if (f[fp1] == e[1])
{
// Edge oriented like face
newFaces.append
(
labelledTri
(
f[fp0],
newPointi,
f[fp2],
f.region()
)
);
newFaces.append
(
labelledTri
(
newPointi,
f[fp1],
f[fp2],
f.region()
)
);
}
else
{
newFaces.append
(
labelledTri
(
f[fp2],
newPointi,
f[fp1],
f.region()
)
);
newFaces.append
(
labelledTri
(
newPointi,
f[fp0],
f[fp1],
f.region()
)
);
}
}
//scalar checkEdgeAngle
//(
// const triSurface& surf,
// const label edgeIndex,
// const label pointIndex,
// const scalar& angle
//)
//{
// const edge& e = surf.edges()[edgeIndex];
// vector eVec = e.vec(surf.localPoints());
// eVec /= mag(eVec) + small;
// const labelList& pEdges = surf.pointEdges()[pointIndex];
//
// forAll(pEdges, eI)
// {
// const edge& nearE = surf.edges()[pEdges[eI]];
// vector nearEVec = nearE.vec(surf.localPoints());
// nearEVec /= mag(nearEVec) + small;
// const scalar dot = eVec & nearEVec;
// const scalar minCos = degToRad(angle);
// if (mag(dot) > minCos)
// {
// return false;
// }
// }
// return true;
//}
void createBoundaryEdgeTrees
(
const PtrList<triSurfaceMesh>& surfs,
PtrList<indexedOctree<treeDataEdge>>& bEdgeTrees,
labelListList& treeBoundaryEdges
)
{
forAll(surfs, surfI)
{
const triSurface& surf = surfs[surfI];
// Boundary edges
treeBoundaryEdges[surfI] =
labelList
(
identity(surf.nEdges() - surf.nInternalEdges())
+ surf.nInternalEdges()
);
Random rndGen(17301893);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
treeBoundBox bb
(
treeBoundBox(UList<point>(surf.localPoints())).extend(1e-4)
);
bEdgeTrees.set
(
surfI,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // cachebb
surf.edges(), // edges
surf.localPoints(), // points
treeBoundaryEdges[surfI] // selected edges
),
bb, // bb
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
}
class findNearestOpSubset
{
const indexedOctree<treeDataEdge>& tree_;
DynamicList<label>& shapeMask_;
public:
findNearestOpSubset
(
const indexedOctree<treeDataEdge>& tree,
DynamicList<label>& shapeMask
)
:
tree_(tree),
shapeMask_(shapeMask)
{}
void operator()
(
const labelUList& indices,
const point& sample,
scalar& nearestDistSqr,
label& minIndex,
point& nearestPoint
) const
{
const treeDataEdge& shape = tree_.shapes();
forAll(indices, i)
{
const label index = indices[i];
const label edgeIndex = shape.edgeLabels()[index];
if
(
!shapeMask_.empty()
&& findIndex(shapeMask_, edgeIndex) != -1
)
{
continue;
}
const edge& e = shape.edges()[edgeIndex];
pointHit nearHit = e.line(shape.points()).nearestDist(sample);
// Only register hit if closest point is not an edge point
if (nearHit.hit())
{
scalar distSqr = sqr(nearHit.distance());
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = nearHit.rawPoint();
}
}
}
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"hook surfaces to other surfaces by moving and retriangulating their"
"boundary edges to match other surface boundary edges"
);
argList::noParallel();
argList::validArgs.append("hookTolerance");
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
const word dictName("surfaceHookUpDict");
#include "setSystemRunTimeDictionaryIO.H"
Info<< "Reading " << dictName << nl << endl;
const IOdictionary dict(dictIO);
const scalar dist(args.argRead<scalar>(1));
const scalar matchTolerance(max(1e-6*dist, small));
const label maxIters = 100;
Info<< "Hooking distance = " << dist << endl;
searchableSurfaces surfs
(
IOobject
(
"surfacesToHook",
runTime.constant(),
"triSurface",
runTime
),
dict,
true // assume single-region names get surface name
);
Info<< nl << "Reading surfaces: " << endl;
forAll(surfs, surfI)
{
Info<< incrIndent;
Info<< nl << indent << "Surface = " << surfs.names()[surfI] << endl;
const wordList& regions = surfs[surfI].regions();
forAll(regions, surfRegionI)
{
Info<< incrIndent;
Info<< indent << "Regions = " << regions[surfRegionI] << endl;
Info<< decrIndent;
}
Info<< decrIndent;
}
PtrList<indexedOctree<treeDataEdge>> bEdgeTrees(surfs.size());
labelListList treeBoundaryEdges(surfs.size());
List<DynamicList<labelledTri>> newFaces(surfs.size());
List<DynamicList<point>> newPoints(surfs.size());
List<PackedBoolList> visitedFace(surfs.size());
PtrList<triSurfaceMesh> newSurfaces(surfs.size());
forAll(surfs, surfI)
{
const triSurfaceMesh& surf =
refCast<const triSurfaceMesh>(surfs[surfI]);
newSurfaces.set
(
surfI,
new triSurfaceMesh
(
IOobject
(
"hookedSurface_" + surfs.names()[surfI],
runTime.constant(),
"triSurface",
runTime
),
surf
)
);
}
label nChanged = 0;
label nIters = 1;
do
{
Info<< nl << "Iteration = " << nIters++ << endl;
nChanged = 0;
createBoundaryEdgeTrees(newSurfaces, bEdgeTrees, treeBoundaryEdges);
forAll(newSurfaces, surfI)
{
const triSurface& newSurf = newSurfaces[surfI];
newFaces[surfI] = newSurf.localFaces();
newPoints[surfI] = newSurf.localPoints();
visitedFace[surfI] = PackedBoolList(newSurf.size(), false);
}
forAll(newSurfaces, surfI)
{
const triSurface& surf = newSurfaces[surfI];
List<pointIndexHit> bPointsTobEdges(surf.boundaryPoints().size());
labelList bPointsHitTree(surf.boundaryPoints().size(), -1);
const labelListList& pointEdges = surf.pointEdges();
forAll(bPointsTobEdges, bPointi)
{
pointIndexHit& nearestHit = bPointsTobEdges[bPointi];
const label pointi = surf.boundaryPoints()[bPointi];
const point& samplePt = surf.localPoints()[pointi];
const labelList& pEdges = pointEdges[pointi];
// Add edges connected to the edge to the shapeMask
DynamicList<label> shapeMask;
shapeMask.append(pEdges);
forAll(bEdgeTrees, treeI)
{
const indexedOctree<treeDataEdge>& bEdgeTree =
bEdgeTrees[treeI];
pointIndexHit currentHit =
bEdgeTree.findNearest
(
samplePt,
sqr(dist),
findNearestOpSubset
(
bEdgeTree,
shapeMask
)
);
if
(
currentHit.hit()
&&
(
!nearestHit.hit()
||
(
magSqr(currentHit.hitPoint() - samplePt)
< magSqr(nearestHit.hitPoint() - samplePt)
)
)
)
{
nearestHit = currentHit;
bPointsHitTree[bPointi] = treeI;
}
}
scalar dist2 = magSqr(nearestHit.rawPoint() - samplePt);
if (nearestHit.hit())
{
// bool rejectEdge =
// checkEdgeAngle
// (
// surf,
// nearestHit.index(),
// pointi,
// 30
// );
if (dist2 > Foam::sqr(dist))
{
nearestHit.setMiss();
}
}
}
forAll(bPointsTobEdges, bPointi)
{
const pointIndexHit& eHit = bPointsTobEdges[bPointi];
if (eHit.hit())
{
const label hitSurfI = bPointsHitTree[bPointi];
const triSurface& hitSurf = newSurfaces[hitSurfI];
const label eIndex =
treeBoundaryEdges[hitSurfI][eHit.index()];
const edge& e = hitSurf.edges()[eIndex];
const label pointi = surf.boundaryPoints()[bPointi];
const labelList& eFaces = hitSurf.edgeFaces()[eIndex];
if (eFaces.size() != 1)
{
WarningInFunction
<< "Edge is attached to " << eFaces.size()
<< " faces." << endl;
continue;
}
const label facei = eFaces[0];
if (visitedFace[hitSurfI][facei])
{
continue;
}
DynamicList<labelledTri> newFacesFromSplit(2);
const point& pt = surf.localPoints()[pointi];
if
(
(
magSqr(pt - hitSurf.localPoints()[e.start()])
< matchTolerance
)
|| (
magSqr(pt - hitSurf.localPoints()[e.end()])
< matchTolerance
)
)
{
continue;
}
nChanged++;
label newPointi = -1;
// Keep the points in the same place and move the edge
if (hitSurfI == surfI)
{
newPointi = pointi;
}
else
{
newPoints[hitSurfI].append(newPoints[surfI][pointi]);
newPointi = newPoints[hitSurfI].size() - 1;
}
// Split the other face.
greenRefine
(
hitSurf,
facei,
eIndex,
newPointi,
newFacesFromSplit
);
visitedFace[hitSurfI][facei] = true;
forAll(newFacesFromSplit, newFacei)
{
const labelledTri& fN = newFacesFromSplit[newFacei];
if (newFacei == 0)
{
newFaces[hitSurfI][facei] = fN;
}
else
{
newFaces[hitSurfI].append(fN);
}
}
}
}
}
Info<< " Number of edges split = " << nChanged << endl;
forAll(newSurfaces, surfI)
{
newSurfaces.set
(
surfI,
new triSurfaceMesh
(
IOobject
(
"hookedSurface_" + surfs.names()[surfI],
runTime.constant(),
"triSurface",
runTime
),
triSurface
(
newFaces[surfI],
newSurfaces[surfI].patches(),
pointField(newPoints[surfI])
)
)
);
}
} while (nChanged > 0 && nIters <= maxIters);
Info<< endl;
forAll(newSurfaces, surfI)
{
const triSurfaceMesh& newSurf = newSurfaces[surfI];
Info<< "Writing hooked surface " << newSurf.searchableSurface::name()
<< endl;
newSurf.searchableSurface::write();
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //