Files
OpenFOAM-6/applications/solvers/multiphase/compressibleInterFoam/twoPhaseMixtureThermo/twoPhaseMixtureThermo.H
Henry Weller 1a0c91b3ba thermophysicalModels: Added laminar thermal diffusivity for energy, alphahe
Needed for laminar transport of he (h or e)

Resolves bug-report https://bugs.openfoam.org/view.php?id=3025
2018-08-05 11:33:58 +01:00

318 lines
9.2 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2013-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::twoPhaseMixtureThermo
Description
SourceFiles
twoPhaseMixtureThermoI.H
twoPhaseMixtureThermo.C
twoPhaseMixtureThermoIO.C
\*---------------------------------------------------------------------------*/
#ifndef twoPhaseMixtureThermo_H
#define twoPhaseMixtureThermo_H
#include "rhoThermo.H"
#include "psiThermo.H"
#include "twoPhaseMixture.H"
#include "interfaceProperties.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class twoPhaseMixtureThermo Declaration
\*---------------------------------------------------------------------------*/
class twoPhaseMixtureThermo
:
public psiThermo,
public twoPhaseMixture,
public interfaceProperties
{
// Private data
//- Thermo-package of phase 1
autoPtr<rhoThermo> thermo1_;
//- Thermo-package of phase 2
autoPtr<rhoThermo> thermo2_;
public:
//- Runtime type information
TypeName("twoPhaseMixtureThermo");
// Constructors
//- Construct from components
twoPhaseMixtureThermo
(
const volVectorField& U,
const surfaceScalarField& phi
);
//- Destructor
virtual ~twoPhaseMixtureThermo();
// Member Functions
const rhoThermo& thermo1() const
{
return thermo1_();
}
const rhoThermo& thermo2() const
{
return thermo2_();
}
rhoThermo& thermo1()
{
return thermo1_();
}
rhoThermo& thermo2()
{
return thermo2_();
}
//- Correct the thermodynamics of each phase
virtual void correctThermo();
//- Update mixture properties
virtual void correct();
//- Return the name of the thermo physics
virtual word thermoName() const;
//- Return true if the equation of state is incompressible
// i.e. rho != f(p)
virtual bool incompressible() const;
//- Return true if the equation of state is isochoric
// i.e. rho = const
virtual bool isochoric() const;
// Access to thermodynamic state variables
//- Enthalpy/Internal energy [J/kg]
// Non-const access allowed for transport equations
virtual volScalarField& he()
{
NotImplemented;
return thermo1_->he();
}
//- Enthalpy/Internal energy [J/kg]
virtual const volScalarField& he() const
{
NotImplemented;
return thermo1_->he();
}
//- Enthalpy/Internal energy
// for given pressure and temperature [J/kg]
virtual tmp<volScalarField> he
(
const volScalarField& p,
const volScalarField& T
) const;
//- Enthalpy/Internal energy for cell-set [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const;
//- Enthalpy/Internal energy for patch [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Chemical enthalpy [J/kg]
virtual tmp<volScalarField> hc() const;
//- Temperature from enthalpy/internal energy for cell-set
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const labelList& cells
) const;
//- Temperature from enthalpy/internal energy for patch
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const label patchi
) const;
// Fields derived from thermodynamic state variables
//- Heat capacity at constant pressure [J/kg/K]
virtual tmp<volScalarField> Cp() const;
//- Heat capacity at constant pressure for patch [J/kg/K]
virtual tmp<scalarField> Cp
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity at constant volume [J/kg/K]
virtual tmp<volScalarField> Cv() const;
//- Heat capacity at constant volume for patch [J/kg/K]
virtual tmp<scalarField> Cv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Gamma = Cp/Cv []
virtual tmp<volScalarField> gamma() const;
//- Gamma = Cp/Cv for patch []
virtual tmp<scalarField> gamma
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity at constant pressure/volume [J/kg/K]
virtual tmp<volScalarField> Cpv() const;
//- Heat capacity at constant pressure/volume for patch [J/kg/K]
virtual tmp<scalarField> Cpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity ratio []
virtual tmp<volScalarField> CpByCpv() const;
//- Heat capacity ratio for patch []
virtual tmp<scalarField> CpByCpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Molecular weight [kg/kmol]
virtual tmp<volScalarField> W() const;
// Fields derived from transport state variables
//- Kinematic viscosity of mixture [m^2/s]
virtual tmp<volScalarField> nu() const;
//- Kinematic viscosity of mixture for patch [m^2/s]
virtual tmp<scalarField> nu(const label patchi) const;
//- Thermal diffusivity for temperature of mixture [J/m/s/K]
virtual tmp<volScalarField> kappa() const;
//- Thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappa
(
const label patchi
) const;
//- Thermal diffusivity for energy of mixture [kg/m/s]
virtual tmp<volScalarField> alphahe() const;
//- Thermal diffusivity for energy of mixture for patch [kg/m/s]
virtual tmp<scalarField> alphahe(const label patchi) const;
//- Effective thermal diffusivity of mixture [J/m/s/K]
virtual tmp<volScalarField> kappaEff
(
const volScalarField& alphat
) const;
//- Effective thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappaEff
(
const scalarField& alphat,
const label patchi
) const;
//- Effective thermal diffusivity of mixture [J/m/s/K]
virtual tmp<volScalarField> alphaEff
(
const volScalarField& alphat
) const;
//- Effective thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> alphaEff
(
const scalarField& alphat,
const label patchi
) const;
// IO
//- Read base transportProperties dictionary
virtual bool read();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //