Files
OpenFOAM-6/applications/solvers/multiphase/reactingTwoPhaseEulerFoam/phaseSystems/phaseSystem/phaseSystem.C
Henry Weller 3ed90ae73d reactingTwoPhaseEulerFoam: New twoPhaseEulerFoam supporting mass-transfer and reactions
Multi-species, mass-transfer and reaction support and multi-phase
structure provided by William Bainbridge.

Integration of the latest p-U and face-p_U algorithms with William's
multi-phase structure is not quite complete due to design
incompatibilities which needs further development.  However the
integration of the functionality is complete.

The results of the tutorials are not exactly the same for the
twoPhaseEulerFoam and reactingTwoPhaseEulerFoam solvers but are very
similar.  Further analysis in needed to ensure these differences are
physical or to resolve them; in the meantime the twoPhaseEulerFoam
solver will be maintained.
2015-06-12 09:52:17 +01:00

371 lines
8.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseSystem.H"
#include "surfaceTensionModel.H"
#include "aspectRatioModel.H"
#include "surfaceInterpolate.H"
#include "fvcDdt.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(phaseSystem, 0);
}
const Foam::word Foam::phaseSystem::propertiesName("phaseProperties");
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
Foam::phaseSystem::phaseModelTable
Foam::phaseSystem::generatePhaseModels(const wordList& phaseNames) const
{
phaseModelTable phaseModels;
forAllConstIter(wordList, phaseNames, phaseNameIter)
{
phaseModels.insert
(
*phaseNameIter,
phaseModel::New
(
*this,
*phaseNameIter
)
);
}
// normalise ?
return phaseModels;
}
Foam::tmp<Foam::surfaceScalarField> Foam::phaseSystem::generatePhi
(
const phaseModelTable& phaseModels
) const
{
phaseModelTable::const_iterator phaseModelIter = phaseModels.begin();
tmp<surfaceScalarField> tmpPhi
(
new surfaceScalarField
(
"phi",
fvc::interpolate(phaseModelIter()())*phaseModelIter()->phi()
)
);
++phaseModelIter;
for (; phaseModelIter != phaseModels.end(); ++ phaseModelIter)
{
tmpPhi() +=
fvc::interpolate(phaseModelIter()())
*phaseModelIter()->phi();
}
return tmpPhi;
}
void Foam::phaseSystem::generatePairs
(
const dictTable& modelDicts
)
{
forAllConstIter(dictTable, modelDicts, iter)
{
const phasePairKey& key = iter.key();
// pair already exists
if (phasePairs_.found(key))
{
// do nothing ...
}
// new ordered pair
else if (key.ordered())
{
phasePairs_.insert
(
key,
autoPtr<phasePair>
(
new orderedPhasePair
(
phaseModels_[key.first()],
phaseModels_[key.second()]
)
)
);
}
// new unordered pair
else
{
phasePairs_.insert
(
key,
autoPtr<phasePair>
(
new phasePair
(
phaseModels_[key.first()],
phaseModels_[key.second()]
)
)
);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::phaseSystem::phaseSystem
(
const fvMesh& mesh
)
:
IOdictionary
(
IOobject
(
"phaseProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
phaseNames_(lookup("phases")),
phaseModels_(generatePhaseModels(phaseNames_)),
phi_(generatePhi(phaseModels_)),
dpdt_
(
IOobject
(
"dpdt",
mesh.time().timeName(),
mesh
),
mesh,
dimensionedScalar("dpdt", dimPressure/dimTime, 0)
),
dgdt_
(
IOobject
(
"dgdt",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("dgdt", dimless/dimTime, 0)
)
{
// Blending methods
forAllConstIter(dictionary, subDict("blending"), iter)
{
blendingMethods_.insert
(
iter().dict().dictName(),
blendingMethod::New
(
iter().dict(),
wordList(lookup("phases"))
)
);
}
// Sub-models
generatePairsAndSubModels("surfaceTension", surfaceTensionModels_);
generatePairsAndSubModels("aspectRatio", aspectRatioModels_);
correctKinematics();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::phaseSystem::~phaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::phaseSystem::rho() const
{
phaseModelTable::const_iterator phaseModelIter = phaseModels_.begin();
tmp<volScalarField> tmpRho
(
phaseModelIter()()*phaseModelIter()->rho()
);
for (; phaseModelIter != phaseModels_.end(); ++ phaseModelIter)
{
tmpRho() += phaseModelIter()()*phaseModelIter()->rho();
}
return tmpRho;
}
Foam::tmp<Foam::volVectorField> Foam::phaseSystem::U() const
{
phaseModelTable::const_iterator phaseModelIter = phaseModels_.begin();
tmp<volVectorField> tmpU
(
phaseModelIter()()*phaseModelIter()->U()
);
for (; phaseModelIter != phaseModels_.end(); ++ phaseModelIter)
{
tmpU() += phaseModelIter()()*phaseModelIter()->U();
}
return tmpU;
}
Foam::tmp<Foam::volScalarField>
Foam::phaseSystem::sigma(const phasePairKey& key) const
{
if (surfaceTensionModels_.found(key))
{
return surfaceTensionModels_[key]->sigma();
}
else
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
surfaceTensionModel::typeName + ":sigma",
this->mesh_.time().timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
this->mesh_,
dimensionedScalar("zero", surfaceTensionModel::dimSigma, 0)
)
);
}
}
void Foam::phaseSystem::solve()
{}
void Foam::phaseSystem::correct()
{
forAllIter(phaseModelTable, phaseModels_, phaseModelIter)
{
phaseModelIter()->correct();
}
}
void Foam::phaseSystem::correctKinematics()
{
bool updateDpdt = false;
forAllIter(phaseModelTable, phaseModels_, phaseModelIter)
{
phaseModelIter()->correctKinematics();
updateDpdt = updateDpdt || phaseModelIter()->thermo().dpdt();
}
// Update the pressure time-derivative if required
if (updateDpdt)
{
dpdt_ = fvc::ddt(phaseModels_.begin()()().thermo().p());
}
}
void Foam::phaseSystem::correctThermo()
{
forAllIter(phaseModelTable, phaseModels_, phaseModelIter)
{
phaseModelIter()->correctThermo();
}
}
void Foam::phaseSystem::correctTurbulence()
{
forAllIter(phaseModelTable, phaseModels_, phaseModelIter)
{
phaseModelIter()->correctTurbulence();
}
}
bool Foam::phaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
forAllIter(phaseModelTable, phaseModels_, phaseModelIter)
{
readOK &= phaseModelIter()->read();
}
// models ...
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //