Files
OpenFOAM-6/applications/solvers/multiphase/interFoam/interMixingFoam/threePhaseInterfaceProperties/threePhaseInterfaceProperties.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

229 lines
6.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "threePhaseInterfaceProperties.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "mathematicalConstants.H"
#include "surfaceInterpolate.H"
#include "fvcDiv.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
const Foam::scalar Foam::threePhaseInterfaceProperties::convertToRad =
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::threePhaseInterfaceProperties::correctContactAngle
(
surfaceVectorField::Boundary& nHatb
) const
{
const volScalarField::Boundary& alpha1 =
mixture_.alpha1().boundaryField();
const volScalarField::Boundary& alpha2 =
mixture_.alpha2().boundaryField();
const volScalarField::Boundary& alpha3 =
mixture_.alpha3().boundaryField();
const volVectorField::Boundary& U =
mixture_.U().boundaryField();
const fvMesh& mesh = mixture_.U().mesh();
const fvBoundaryMesh& boundary = mesh.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(alpha1[patchi]))
{
const alphaContactAngleFvPatchScalarField& a2cap =
refCast<const alphaContactAngleFvPatchScalarField>
(alpha2[patchi]);
const alphaContactAngleFvPatchScalarField& a3cap =
refCast<const alphaContactAngleFvPatchScalarField>
(alpha3[patchi]);
scalarField twoPhaseAlpha2(max(a2cap, scalar(0)));
scalarField twoPhaseAlpha3(max(a3cap, scalar(0)));
scalarField sumTwoPhaseAlpha
(
twoPhaseAlpha2 + twoPhaseAlpha3 + small
);
twoPhaseAlpha2 /= sumTwoPhaseAlpha;
twoPhaseAlpha3 /= sumTwoPhaseAlpha;
fvsPatchVectorField& nHatp = nHatb[patchi];
scalarField theta
(
convertToRad
* (
twoPhaseAlpha2*(180 - a2cap.theta(U[patchi], nHatp))
+ twoPhaseAlpha3*(180 - a3cap.theta(U[patchi], nHatp))
)
);
vectorField nf(boundary[patchi].nf());
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatp & nf);
scalarField b1(cos(theta));
scalarField b2(nHatp.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatp = a*nf + b*nHatp;
nHatp /= (mag(nHatp) + deltaN_.value());
}
}
}
void Foam::threePhaseInterfaceProperties::calculateK()
{
const volScalarField& alpha1 = mixture_.alpha1();
const fvMesh& mesh = alpha1.mesh();
const surfaceVectorField& Sf = mesh.Sf();
// Cell gradient of alpha
volVectorField gradAlpha(fvc::grad(alpha1));
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf(fvc::interpolate(gradAlpha));
// Face unit interface normal
surfaceVectorField nHatfv(gradAlphaf/(mag(gradAlphaf) + deltaN_));
correctContactAngle(nHatfv.boundaryFieldRef());
// Face unit interface normal flux
nHatf_ = nHatfv & Sf;
// Simple expression for curvature
K_ = -fvc::div(nHatf_);
// Complex expression for curvature.
// Correction is formally zero but numerically non-zero.
// volVectorField nHat = gradAlpha/(mag(gradAlpha) + deltaN_);
// nHat.boundaryField() = nHatfv.boundaryField();
// K_ = -fvc::div(nHatf_) + (nHat & fvc::grad(nHatfv) & nHat);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::threePhaseInterfaceProperties::threePhaseInterfaceProperties
(
const incompressibleThreePhaseMixture& mixture
)
:
mixture_(mixture),
cAlpha_
(
readScalar
(
mixture.U().mesh().solverDict
(
mixture_.alpha1().name()
).lookup("cAlpha")
)
),
sigma12_("sigma12", dimensionSet(1, 0, -2, 0, 0), mixture),
sigma13_("sigma13", dimensionSet(1, 0, -2, 0, 0), mixture),
deltaN_
(
"deltaN",
1e-8/pow(average(mixture.U().mesh().V()), 1.0/3.0)
),
nHatf_
(
IOobject
(
"nHatf",
mixture.alpha1().time().timeName(),
mixture.alpha1().mesh()
),
mixture.alpha1().mesh(),
dimensionedScalar("nHatf", dimArea, 0.0)
),
K_
(
IOobject
(
"interfaceProperties:K",
mixture.alpha1().time().timeName(),
mixture.alpha1().mesh()
),
mixture.alpha1().mesh(),
dimensionedScalar("K", dimless/dimLength, 0.0)
)
{
calculateK();
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::surfaceScalarField>
Foam::threePhaseInterfaceProperties::surfaceTensionForce() const
{
return fvc::interpolate(sigmaK())*fvc::snGrad(mixture_.alpha1());
}
Foam::tmp<Foam::volScalarField>
Foam::threePhaseInterfaceProperties::nearInterface() const
{
return max
(
pos0(mixture_.alpha1() - 0.01)*pos0(0.99 - mixture_.alpha1()),
pos0(mixture_.alpha2() - 0.01)*pos0(0.99 - mixture_.alpha2())
);
}
// ************************************************************************* //