Files
OpenFOAM-6/src/functionObjects/field/regionSizeDistribution/regionSizeDistribution.C
Henry Weller 8b672f0f1a postProcessing: Replaced 'foamCalc' and the 'postCalc' utilities
with the more general and flexible 'postProcess' utility and '-postProcess' solver option

Rationale
---------

Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.

The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.

Configuration
-------------

An extensive set of simple functionObject configuration files are
provided in

OpenFOAM-dev/etc/caseDicts/postProcessing

and more will be added in the future.  These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.

functions
{
    #includeFunc Q
    #includeFunc Lambda2
}

'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.

Description of #includeFunc
---------------------------

    Specify a functionObject dictionary file to include, expects the
    functionObject name to follow (without quotes).

    Search for functionObject dictionary file in
    user/group/shipped directories.
    The search scheme allows for version-specific and
    version-independent files using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
      - ~/.OpenFOAM/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_SITE/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/postProcessing

    An example of the \c \#includeFunc directive:
    \verbatim
        #includeFunc <funcName>
    \endverbatim

postProcess
-----------

The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:

postProcess -help

Usage: postProcess [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

 pimpleFoam -postProcess -help

Usage: pimpleFoam [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -postProcess      Execute functionObjects only
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.

postProcess -func Q
postProcess -funcs '(div(U) div(phi))'

In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:

postProcess -func 'Q(Ua)'

as is done in the example above to calculate the two forms of the divergence of
the velocity field.  Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.

The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories.  However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.

pisoFoam -postProcess -func PecletNo

or

sonicFoam -postProcess -func MachNo

In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.

Henry G. Weller
CFD Direct Ltd.
2016-05-28 18:58:48 +01:00

858 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "regionSizeDistribution.H"
#include "fvcVolumeIntegrate.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(regionSizeDistribution, 0);
addToRunTimeSelectionTable
(
functionObject,
regionSizeDistribution,
dictionary
);
}
//- Plus op for FixedList<scalar>
template<class T, unsigned Size>
class ListPlusEqOp
{
public:
void operator()
(
FixedList<T, Size>& x,
const FixedList<T, Size>& y
) const
{
forAll(x, i)
{
x[i] += y[i];
}
}
};
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::functionObjects::regionSizeDistribution::writeGraph
(
const coordSet& coords,
const word& valueName,
const scalarField& values
) const
{
const wordList valNames(1, valueName);
fileName outputPath = baseTimeDir();
mkDir(outputPath);
OFstream str(outputPath/formatterPtr_().getFileName(coords, valNames));
Info<< " Writing distribution of " << valueName << " to " << str.name()
<< endl;
List<const scalarField*> valPtrs(1);
valPtrs[0] = &values;
formatterPtr_().write(coords, valNames, valPtrs, str);
}
void Foam::functionObjects::regionSizeDistribution::writeAlphaFields
(
const regionSplit& regions,
const Map<label>& patchRegions,
const Map<scalar>& regionVolume,
const volScalarField& alpha
) const
{
const scalar maxDropletVol = 1.0/6.0*pow(maxDiam_, 3);
// Split alpha field
// ~~~~~~~~~~~~~~~~~
// Split into
// - liquidCore : region connected to inlet patches
// - per region a volume : for all other regions
// - backgroundAlpha : remaining alpha
// Construct field
volScalarField liquidCore
(
IOobject
(
alphaName_ + "_liquidCore",
obr_.time().timeName(),
obr_,
IOobject::NO_READ
),
alpha,
fvPatchField<scalar>::calculatedType()
);
volScalarField backgroundAlpha
(
IOobject
(
alphaName_ + "_background",
obr_.time().timeName(),
obr_,
IOobject::NO_READ
),
alpha,
fvPatchField<scalar>::calculatedType()
);
// Knock out any cell not in patchRegions
forAll(liquidCore, celli)
{
label regionI = regions[celli];
if (patchRegions.found(regionI))
{
backgroundAlpha[celli] = 0;
}
else
{
liquidCore[celli] = 0;
scalar regionVol = regionVolume[regionI];
if (regionVol < maxDropletVol)
{
backgroundAlpha[celli] = 0;
}
}
}
liquidCore.correctBoundaryConditions();
backgroundAlpha.correctBoundaryConditions();
Info<< " Volume of liquid-core = "
<< fvc::domainIntegrate(liquidCore).value()
<< endl;
Info<< " Volume of background = "
<< fvc::domainIntegrate(backgroundAlpha).value()
<< endl;
Info<< " Writing liquid-core field to " << liquidCore.name() << endl;
liquidCore.write();
Info<< " Writing background field to " << backgroundAlpha.name() << endl;
backgroundAlpha.write();
}
Foam::Map<Foam::label>
Foam::functionObjects::regionSizeDistribution::findPatchRegions
(
const polyMesh& mesh,
const regionSplit& regions
) const
{
// Mark all regions starting at patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Count number of patch faces (just for initial sizing)
const labelHashSet patchIDs(mesh.boundaryMesh().patchSet(patchNames_));
label nPatchFaces = 0;
forAllConstIter(labelHashSet, patchIDs, iter)
{
nPatchFaces += mesh.boundaryMesh()[iter.key()].size();
}
Map<label> patchRegions(nPatchFaces);
forAllConstIter(labelHashSet, patchIDs, iter)
{
const polyPatch& pp = mesh.boundaryMesh()[iter.key()];
// Collect all regions on the patch
const labelList& faceCells = pp.faceCells();
forAll(faceCells, i)
{
patchRegions.insert
(
regions[faceCells[i]],
Pstream::myProcNo() // dummy value
);
}
}
// Make sure all the processors have the same set of regions
Pstream::mapCombineGather(patchRegions, minEqOp<label>());
Pstream::mapCombineScatter(patchRegions);
return patchRegions;
}
Foam::tmp<Foam::scalarField>
Foam::functionObjects::regionSizeDistribution::divide
(
const scalarField& num,
const scalarField& denom
)
{
tmp<scalarField> tresult(new scalarField(num.size()));
scalarField& result = tresult.ref();
forAll(denom, i)
{
if (denom[i] != 0)
{
result[i] = num[i]/denom[i];
}
else
{
result[i] = 0.0;
}
}
return tresult;
}
void Foam::functionObjects::regionSizeDistribution::writeGraphs
(
const word& fieldName, // name of field
const labelList& indices, // index of bin for each region
const scalarField& sortedField, // per region field data
const scalarField& binCount, // per bin number of regions
const coordSet& coords // graph data for bins
) const
{
if (Pstream::master())
{
// Calculate per-bin average
scalarField binSum(nBins_, 0.0);
forAll(sortedField, i)
{
binSum[indices[i]] += sortedField[i];
}
scalarField binAvg(divide(binSum, binCount));
// Per bin deviation
scalarField binSqrSum(nBins_, 0.0);
forAll(sortedField, i)
{
binSqrSum[indices[i]] += Foam::sqr(sortedField[i]);
}
scalarField binDev
(
sqrt(divide(binSqrSum, binCount) - Foam::sqr(binAvg))
);
// Write average
writeGraph(coords, fieldName + "_sum", binSum);
// Write average
writeGraph(coords, fieldName + "_avg", binAvg);
// Write deviation
writeGraph(coords, fieldName + "_dev", binDev);
}
}
void Foam::functionObjects::regionSizeDistribution::writeGraphs
(
const word& fieldName, // name of field
const scalarField& cellField, // per cell field data
const regionSplit& regions, // per cell the region(=droplet)
const labelList& sortedRegions, // valid regions in sorted order
const scalarField& sortedNormalisation,
const labelList& indices, // per region index of bin
const scalarField& binCount, // per bin number of regions
const coordSet& coords // graph data for bins
) const
{
// Sum on a per-region basis. Parallel reduced.
Map<scalar> regionField(regionSum(regions, cellField));
// Extract in region order
scalarField sortedField
(
sortedNormalisation
* extractData
(
sortedRegions,
regionField
)
);
writeGraphs
(
fieldName, // name of field
indices, // index of bin for each region
sortedField, // per region field data
binCount, // per bin number of regions
coords // graph data for bins
);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::regionSizeDistribution::regionSizeDistribution
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
writeFile(name, runTime, dict, name),
alphaName_(dict.lookup("field")),
patchNames_(dict.lookup("patches"))
{
if (!isA<fvMesh>(obr_))
{
FatalErrorInFunction
<< "objectRegistry is not an fvMesh" << exit(FatalError);
}
read(dict);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::regionSizeDistribution::~regionSizeDistribution()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::regionSizeDistribution::read(const dictionary& dict)
{
dict.lookup("field") >> alphaName_;
dict.lookup("patches") >> patchNames_;
dict.lookup("threshold") >> threshold_;
dict.lookup("maxDiameter") >> maxDiam_;
minDiam_ = 0.0;
dict.readIfPresent("minDiameter", minDiam_);
dict.lookup("nBins") >> nBins_;
dict.lookup("fields") >> fields_;
word format(dict.lookup("setFormat"));
formatterPtr_ = writer<scalar>::New(format);
if (dict.found("coordinateSystem"))
{
coordSysPtr_.reset(new coordinateSystem(obr_, dict));
Info<< "Transforming all vectorFields with coordinate system "
<< coordSysPtr_().name() << endl;
}
return true;
}
bool Foam::functionObjects::regionSizeDistribution::execute
(
const bool postProcess
)
{
return true;
}
bool Foam::functionObjects::regionSizeDistribution::write
(
const bool postProcess
)
{
Info<< type() << " " << name() << " output:" << nl;
const fvMesh& mesh = refCast<const fvMesh>(obr_);
autoPtr<volScalarField> alphaPtr;
if (obr_.foundObject<volScalarField>(alphaName_))
{
Info<< " Looking up field " << alphaName_ << endl;
}
else
{
Info<< " Reading field " << alphaName_ << endl;
alphaPtr.reset
(
new volScalarField
(
IOobject
(
alphaName_,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
)
);
}
const volScalarField& alpha =
(
alphaPtr.valid()
? alphaPtr()
: obr_.lookupObject<volScalarField>(alphaName_)
);
Info<< " Volume of alpha = "
<< fvc::domainIntegrate(alpha).value()
<< endl;
const scalar meshVol = gSum(mesh.V());
const scalar maxDropletVol = 1.0/6.0*pow(maxDiam_, 3);
const scalar delta = (maxDiam_-minDiam_)/nBins_;
Info<< " Mesh volume = " << meshVol << endl;
Info<< " Maximum droplet diameter = " << maxDiam_ << endl;
Info<< " Maximum droplet volume = " << maxDropletVol << endl;
// Determine blocked faces
boolList blockedFace(mesh.nFaces(), false);
label nBlocked = 0;
{
for (label facei = 0; facei < mesh.nInternalFaces(); facei++)
{
scalar ownVal = alpha[mesh.faceOwner()[facei]];
scalar neiVal = alpha[mesh.faceNeighbour()[facei]];
if
(
(ownVal < threshold_ && neiVal > threshold_)
|| (ownVal > threshold_ && neiVal < threshold_)
)
{
blockedFace[facei] = true;
nBlocked++;
}
}
// Block coupled faces
forAll(alpha.boundaryField(), patchi)
{
const fvPatchScalarField& fvp = alpha.boundaryField()[patchi];
if (fvp.coupled())
{
tmp<scalarField> townFld(fvp.patchInternalField());
const scalarField& ownFld = townFld();
tmp<scalarField> tnbrFld(fvp.patchNeighbourField());
const scalarField& nbrFld = tnbrFld();
label start = fvp.patch().patch().start();
forAll(ownFld, i)
{
scalar ownVal = ownFld[i];
scalar neiVal = nbrFld[i];
if
(
(ownVal < threshold_ && neiVal > threshold_)
|| (ownVal > threshold_ && neiVal < threshold_)
)
{
blockedFace[start+i] = true;
nBlocked++;
}
}
}
}
}
regionSplit regions(mesh, blockedFace);
Info<< " Determined " << regions.nRegions()
<< " disconnected regions" << endl;
if (debug)
{
volScalarField region
(
IOobject
(
"region",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimless, 0)
);
Info<< " Dumping region as volScalarField to " << region.name()
<< endl;
forAll(regions, celli)
{
region[celli] = regions[celli];
}
region.correctBoundaryConditions();
region.write();
}
// Determine regions connected to supplied patches
Map<label> patchRegions(findPatchRegions(mesh, regions));
// Sum all regions
const scalarField alphaVol(alpha.primitiveField()*mesh.V());
Map<scalar> allRegionVolume(regionSum(regions, mesh.V()));
Map<scalar> allRegionAlphaVolume(regionSum(regions, alphaVol));
Map<label> allRegionNumCells
(
regionSum
(
regions,
labelField(mesh.nCells(), 1.0)
)
);
if (debug)
{
Info<< " " << token::TAB << "Region"
<< token::TAB << "Volume(mesh)"
<< token::TAB << "Volume(" << alpha.name() << "):"
<< token::TAB << "nCells"
<< endl;
scalar meshSumVol = 0.0;
scalar alphaSumVol = 0.0;
label nCells = 0;
Map<scalar>::const_iterator vIter = allRegionVolume.begin();
Map<scalar>::const_iterator aIter = allRegionAlphaVolume.begin();
Map<label>::const_iterator numIter = allRegionNumCells.begin();
for
(
;
vIter != allRegionVolume.end()
&& aIter != allRegionAlphaVolume.end();
++vIter, ++aIter, ++numIter
)
{
Info<< " " << token::TAB << vIter.key()
<< token::TAB << vIter()
<< token::TAB << aIter()
<< token::TAB << numIter()
<< endl;
meshSumVol += vIter();
alphaSumVol += aIter();
nCells += numIter();
}
Info<< " " << token::TAB << "Total:"
<< token::TAB << meshSumVol
<< token::TAB << alphaSumVol
<< token::TAB << nCells
<< endl;
Info<< endl;
}
{
Info<< " Patch connected regions (liquid core):" << endl;
Info<< token::TAB << " Region"
<< token::TAB << "Volume(mesh)"
<< token::TAB << "Volume(" << alpha.name() << "):"
<< endl;
forAllConstIter(Map<label>, patchRegions, iter)
{
label regionI = iter.key();
Info<< " " << token::TAB << iter.key()
<< token::TAB << allRegionVolume[regionI]
<< token::TAB << allRegionAlphaVolume[regionI] << endl;
}
Info<< endl;
}
{
Info<< " Background regions:" << endl;
Info<< " " << token::TAB << "Region"
<< token::TAB << "Volume(mesh)"
<< token::TAB << "Volume(" << alpha.name() << "):"
<< endl;
Map<scalar>::const_iterator vIter = allRegionVolume.begin();
Map<scalar>::const_iterator aIter = allRegionAlphaVolume.begin();
for
(
;
vIter != allRegionVolume.end()
&& aIter != allRegionAlphaVolume.end();
++vIter, ++aIter
)
{
if
(
!patchRegions.found(vIter.key())
&& vIter() >= maxDropletVol
)
{
Info<< " " << token::TAB << vIter.key()
<< token::TAB << vIter()
<< token::TAB << aIter() << endl;
}
}
Info<< endl;
}
// Split alpha field
// ~~~~~~~~~~~~~~~~~
// Split into
// - liquidCore : region connected to inlet patches
// - per region a volume : for all other regions
// - backgroundAlpha : remaining alpha
writeAlphaFields(regions, patchRegions, allRegionVolume, alpha);
// Extract droplet-only allRegionVolume, i.e. delete liquid core
// (patchRegions) and background regions from maps.
// Note that we have to use mesh volume (allRegionVolume) and not
// allRegionAlphaVolume since background might not have alpha in it.
forAllIter(Map<scalar>, allRegionVolume, vIter)
{
label regionI = vIter.key();
if
(
patchRegions.found(regionI)
|| vIter() >= maxDropletVol
)
{
allRegionVolume.erase(vIter);
allRegionAlphaVolume.erase(regionI);
allRegionNumCells.erase(regionI);
}
}
if (allRegionVolume.size())
{
// Construct mids of bins for plotting
pointField xBin(nBins_);
scalar x = 0.5*delta;
forAll(xBin, i)
{
xBin[i] = point(x, 0, 0);
x += delta;
}
const coordSet coords("diameter", "x", xBin, mag(xBin));
// Get in region order the alpha*volume and diameter
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const labelList sortedRegions = allRegionAlphaVolume.sortedToc();
scalarField sortedVols
(
extractData
(
sortedRegions,
allRegionAlphaVolume
)
);
// Calculate the diameters
scalarField sortedDiameters(sortedVols.size());
forAll(sortedDiameters, i)
{
sortedDiameters[i] = Foam::cbrt
(
sortedVols[i]
*6/constant::mathematical::pi
);
}
// Determine the bin index for all the diameters
labelList indices(sortedDiameters.size());
forAll(sortedDiameters, i)
{
indices[i] = (sortedDiameters[i]-minDiam_)/delta;
}
// Calculate the counts per diameter bin
scalarField binCount(nBins_, 0.0);
forAll(sortedDiameters, i)
{
binCount[indices[i]] += 1.0;
}
// Write counts
if (Pstream::master())
{
writeGraph(coords, "count", binCount);
}
// Write to screen
{
Info<< " Bins:" << endl;
Info<< " " << token::TAB << "Bin"
<< token::TAB << "Min diameter"
<< token::TAB << "Count:"
<< endl;
scalar diam = 0.0;
forAll(binCount, binI)
{
Info<< " " << token::TAB << binI
<< token::TAB << diam
<< token::TAB << binCount[binI] << endl;
diam += delta;
}
Info<< endl;
}
// Write average and deviation of droplet volume.
writeGraphs
(
"volume", // name of field
indices, // per region the bin index
sortedVols, // per region field data
binCount, // per bin number of regions
coords // graph data for bins
);
// Collect some more field
{
wordList scalarNames(obr_.names(volScalarField::typeName));
labelList selected = findStrings(fields_, scalarNames);
forAll(selected, i)
{
const word& fldName = scalarNames[selected[i]];
Info<< " Scalar field " << fldName << endl;
const scalarField& fld = obr_.lookupObject
<
volScalarField
>(fldName).primitiveField();
writeGraphs
(
fldName, // name of field
alphaVol*fld, // per cell field data
regions, // per cell the region(=droplet)
sortedRegions, // valid regions in sorted order
1.0/sortedVols, // per region normalisation
indices, // index of bin for each region
binCount, // per bin number of regions
coords // graph data for bins
);
}
}
{
wordList vectorNames(obr_.names(volVectorField::typeName));
labelList selected = findStrings(fields_, vectorNames);
forAll(selected, i)
{
const word& fldName = vectorNames[selected[i]];
Info<< " Vector field " << fldName << endl;
vectorField fld = obr_.lookupObject
<
volVectorField
>(fldName).primitiveField();
if (coordSysPtr_.valid())
{
Info<< "Transforming vector field " << fldName
<< " with coordinate system "
<< coordSysPtr_().name()
<< endl;
fld = coordSysPtr_().localVector(fld);
}
// Components
for (direction cmp = 0; cmp < vector::nComponents; cmp++)
{
writeGraphs
(
fldName + vector::componentNames[cmp],
alphaVol*fld.component(cmp),// per cell field data
regions, // per cell the region(=droplet)
sortedRegions, // valid regions in sorted order
1.0/sortedVols, // per region normalisation
indices, // index of bin for each region
binCount, // per bin number of regions
coords // graph data for bins
);
}
// Magnitude
writeGraphs
(
fldName + "mag", // name of field
alphaVol*mag(fld), // per cell field data
regions, // per cell the region(=droplet)
sortedRegions, // valid regions in sorted order
1.0/sortedVols, // per region normalisation
indices, // index of bin for each region
binCount, // per bin number of regions
coords // graph data for bins
);
}
}
}
return true;
}
// ************************************************************************* //