Files
OpenFOAM-6/applications/solvers/multiphase/twoPhaseEulerFoam/twoPhaseSystem/BlendedInterfacialModel/BlendedInterfacialModel.C

469 lines
10 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2014-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "BlendedInterfacialModel.H"
#include "fixedValueFvsPatchFields.H"
#include "surfaceInterpolate.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class modelType>
template<class GeometricField>
void Foam::BlendedInterfacialModel<modelType>::correctFixedFluxBCs
(
GeometricField& field
) const
{
forAll(pair_.phase1().phi().boundaryField(), patchI)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
pair_.phase1().phi().boundaryField()[patchI]
)
)
{
field.boundaryField()[patchI]
= pTraits<typename GeometricField::value_type>::zero;
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class modelType>
Foam::BlendedInterfacialModel<modelType>::BlendedInterfacialModel
(
const phasePair::dictTable& modelTable,
const blendingMethod& blending,
const phasePair& pair,
const orderedPhasePair& pair1In2,
const orderedPhasePair& pair2In1,
const bool correctFixedFluxBCs
)
:
pair_(pair),
pair1In2_(pair1In2),
pair2In1_(pair2In1),
blending_(blending),
correctFixedFluxBCs_(correctFixedFluxBCs)
{
if (modelTable.found(pair_))
{
model_.set
(
modelType::New
(
modelTable[pair_],
pair_
).ptr()
);
}
if (modelTable.found(pair1In2_))
{
model1In2_.set
(
modelType::New
(
modelTable[pair1In2_],
pair1In2_
).ptr()
);
}
if (modelTable.found(pair2In1_))
{
model2In1_.set
(
modelType::New
(
modelTable[pair2In1_],
pair2In1_
).ptr()
);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class modelType>
Foam::BlendedInterfacialModel<modelType>::~BlendedInterfacialModel()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class modelType>
Foam::tmp<Foam::volScalarField>
Foam::BlendedInterfacialModel<modelType>::K() const
{
tmp<volScalarField> f1, f2;
if (model_.valid() || model1In2_.valid())
{
f1 = blending_.f1(pair1In2_.dispersed(), pair2In1_.dispersed());
}
if (model_.valid() || model2In1_.valid())
{
f2 = blending_.f2(pair1In2_.dispersed(), pair2In1_.dispersed());
}
tmp<volScalarField> x
(
new volScalarField
(
IOobject
(
modelType::typeName + ":K",
pair_.phase1().mesh().time().timeName(),
pair_.phase1().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pair_.phase1().mesh(),
dimensionedScalar("zero", modelType::dimK, 0)
)
);
if (model_.valid())
{
x() += model_->K()*(f1() - f2());
}
if (model1In2_.valid())
{
x() += model1In2_->K()*(1 - f1);
}
if (model2In1_.valid())
{
x() += model2In1_->K()*f2;
}
if
(
correctFixedFluxBCs_
&& (model_.valid() || model1In2_.valid() || model2In1_.valid())
)
{
correctFixedFluxBCs(x());
}
return x;
}
template<class modelType>
Foam::tmp<Foam::surfaceScalarField>
Foam::BlendedInterfacialModel<modelType>::Kf() const
{
tmp<surfaceScalarField> f1, f2;
if (model_.valid() || model1In2_.valid())
{
f1 = fvc::interpolate
(
blending_.f1(pair1In2_.dispersed(), pair2In1_.dispersed())
);
}
if (model_.valid() || model2In1_.valid())
{
f2 = fvc::interpolate
(
blending_.f2(pair1In2_.dispersed(), pair2In1_.dispersed())
);
}
tmp<surfaceScalarField> x
(
new surfaceScalarField
(
IOobject
(
modelType::typeName + ":Kf",
pair_.phase1().mesh().time().timeName(),
pair_.phase1().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pair_.phase1().mesh(),
dimensionedScalar("zero", modelType::dimK, 0)
)
);
if (model_.valid())
{
x() += model_->Kf()*(f1() - f2());
}
if (model1In2_.valid())
{
x() += model1In2_->Kf()*(1 - f1);
}
if (model2In1_.valid())
{
x() += model2In1_->Kf()*f2;
}
if
(
correctFixedFluxBCs_
&& (model_.valid() || model1In2_.valid() || model2In1_.valid())
)
{
correctFixedFluxBCs(x());
}
return x;
}
template<class modelType>
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh>>
Foam::BlendedInterfacialModel<modelType>::F() const
{
tmp<volScalarField> f1, f2;
if (model_.valid() || model1In2_.valid())
{
f1 = blending_.f1(pair1In2_.dispersed(), pair2In1_.dispersed());
}
if (model_.valid() || model2In1_.valid())
{
f2 = blending_.f2(pair1In2_.dispersed(), pair2In1_.dispersed());
}
tmp<GeometricField<Type, fvPatchField, volMesh>> x
(
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
modelType::typeName + ":F",
pair_.phase1().mesh().time().timeName(),
pair_.phase1().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pair_.phase1().mesh(),
dimensioned<Type>("zero", modelType::dimF, pTraits<Type>::zero)
)
);
if (model_.valid())
{
x() += model_->F()*(f1() - f2());
}
if (model1In2_.valid())
{
x() += model1In2_->F()*(1 - f1);
}
if (model2In1_.valid())
{
x() -= model2In1_->F()*f2; // note : subtraction
}
if
(
correctFixedFluxBCs_
&& (model_.valid() || model1In2_.valid() || model2In1_.valid())
)
{
correctFixedFluxBCs(x());
}
return x;
}
template<class modelType>
Foam::tmp<Foam::surfaceScalarField>
Foam::BlendedInterfacialModel<modelType>::Ff() const
{
tmp<surfaceScalarField> f1, f2;
if (model_.valid() || model1In2_.valid())
{
f1 = fvc::interpolate
(
blending_.f1(pair1In2_.dispersed(), pair2In1_.dispersed())
);
}
if (model_.valid() || model2In1_.valid())
{
f2 = fvc::interpolate
(
blending_.f2(pair1In2_.dispersed(), pair2In1_.dispersed())
);
}
tmp<surfaceScalarField> x
(
new surfaceScalarField
(
IOobject
(
modelType::typeName + ":Ff",
pair_.phase1().mesh().time().timeName(),
pair_.phase1().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pair_.phase1().mesh(),
dimensionedScalar("zero", modelType::dimF*dimArea, 0)
)
);
if (model_.valid())
{
x() += model_->Ff()*(f1() - f2());
}
if (model1In2_.valid())
{
x() += model1In2_->Ff()*(1 - f1);
}
if (model2In1_.valid())
{
x() -= model2In1_->Ff()*f2; // note : subtraction
}
if
(
correctFixedFluxBCs_
&& (model_.valid() || model1In2_.valid() || model2In1_.valid())
)
{
correctFixedFluxBCs(x());
}
return x;
}
template<class modelType>
Foam::tmp<Foam::volScalarField>
Foam::BlendedInterfacialModel<modelType>::D() const
{
tmp<volScalarField> f1, f2;
if (model_.valid() || model1In2_.valid())
{
f1 = blending_.f1(pair1In2_.dispersed(), pair2In1_.dispersed());
}
if (model_.valid() || model2In1_.valid())
{
f2 = blending_.f2(pair1In2_.dispersed(), pair2In1_.dispersed());
}
tmp<volScalarField> x
(
new volScalarField
(
IOobject
(
modelType::typeName + ":D",
pair_.phase1().mesh().time().timeName(),
pair_.phase1().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pair_.phase1().mesh(),
dimensionedScalar("zero", modelType::dimD, 0)
)
);
if (model_.valid())
{
x() += model_->D()*(f1() - f2());
}
if (model1In2_.valid())
{
x() += model1In2_->D()*(1 - f1);
}
if (model2In1_.valid())
{
x() += model2In1_->D()*f2;
}
if
(
correctFixedFluxBCs_
&& (model_.valid() || model1In2_.valid() || model2In1_.valid())
)
{
correctFixedFluxBCs(x());
}
return x;
}
template<class modelType>
bool Foam::BlendedInterfacialModel<modelType>::hasModel
(
const class phaseModel& phase
) const
{
return
&phase == &(pair_.phase1())
? model1In2_.valid()
: model2In1_.valid();
}
template<class modelType>
const modelType& Foam::BlendedInterfacialModel<modelType>::phaseModel
(
const class phaseModel& phase
) const
{
return &phase == &(pair_.phase1()) ? model1In2_ : model2In1_;
}
// ************************************************************************* //