Files
Will Bainbridge ab610d20ad test/multiphase: Made gnuplot scripting consistent with tutorials
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2018-05-16 13:16:46 +01:00

58 lines
1.4 KiB
Bash
Executable File

#!/bin/sh
if ! which gnuplot > /dev/null 2>&1
then
echo 'gnuplot not found - skipping graph creation' >&2
exit 1
fi
gnuplot<<EOF
set terminal postscript eps monochrome
set output '../numberDensity.eps'
set decimalsign '.'
set format xy '%g'
set xtics 1e2 mirror
set xlabel 'v(m^{3})'
set ytics 1e5 mirror
set ylabel 'n(m^{-3}m^{-3})'
set logscale xy
set xrange [1e-5:1e2]
set yrange [1e-15:100]
set key at graph 0.55,0.5
C = 1
N0 = 2.5
v0 = 0.01
# Dimensionless volume
X(x) = x/v0
# Initial condition
n0(x) = (N0/v0)*X(x)*exp(-X(x))
T(t) = C*N0*t
# For solution of quadratic saddle point equation
p(x) = -1/X(x)
q(t) = -(T(t)/(T(t) + 2))
# Saddle point calculation
y_s(t,x) = -p(x)/2 + sqrt((p(x)/2)**2 - q(T(t)))
# Dimensionless spectrum function
phi(x,t) = (8*exp((y_s(t,x) - 1)*X(x)*2))/(((T(t) + 2)**2)*y_s(t,x)*(4*pi*(2 - 1/(y_s(t,x)*X(x)))))
# Number density at time t
n(x,t) = (N0/v0)*phi(x,t)
plot n0(x) ls -1 t 'Initial Condition',\
n(x,10.0) ls 2 lc rgb 'black' t '[Scott, J. Atmos. Sci., 25: 54-65, 1968]',\
'../numberDensity.transposed.dat' every ::0::46 u 1:2 w p pt 1 t 'air1',\
'../numberDensity.transposed.dat' every ::47::55 u 1:2 w p pt 5 t 'air2',\
'../numberDensity.transposed.dat' every ::56::70 u 1:2 w p pt 9 t 'air3'
EOF
#------------------------------------------------------------------------------