Files
OpenFOAM-6/applications/utilities/surface/surfaceInertia/surfaceInertia.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

416 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceInertia
Description
Calculates the inertia tensor, principal axes and moments of a
command line specified triSurface. Inertia can either be of the
solid body or of a thin shell.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "ListOps.H"
#include "triSurface.H"
#include "OFstream.H"
#include "meshTools.H"
#include "Random.H"
#include "transform.H"
#include "IOmanip.H"
#include "Pair.H"
#include "momentOfInertia.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
int main(int argc, char *argv[])
{
argList::addNote
(
"Calculates the inertia tensor and principal axes and moments "
"of the specified surface.\n"
"Inertia can either be of the solid body or of a thin shell."
);
argList::noParallel();
argList::validArgs.append("surface file");
argList::addBoolOption
(
"shellProperties",
"inertia of a thin shell"
);
argList::addOption
(
"density",
"scalar",
"Specify density, "
"kg/m3 for solid properties, kg/m2 for shell properties"
);
argList::addOption
(
"referencePoint",
"vector",
"Inertia relative to this point, not the centre of mass"
);
argList args(argc, argv);
const fileName surfFileName = args[1];
const scalar density = args.optionLookupOrDefault("density", 1.0);
vector refPt = Zero;
bool calcAroundRefPt = args.optionReadIfPresent("referencePoint", refPt);
triSurface surf(surfFileName);
scalar m = 0.0;
vector cM = Zero;
tensor J = Zero;
if (args.optionFound("shellProperties"))
{
momentOfInertia::massPropertiesShell(surf, density, m, cM, J);
}
else
{
momentOfInertia::massPropertiesSolid(surf, density, m, cM, J);
}
if (m < 0)
{
WarningInFunction
<< "Negative mass detected, the surface may be inside-out." << endl;
}
vector eVal = eigenValues(J);
tensor eVec = eigenVectors(J);
label pertI = 0;
Random rand(57373);
while ((magSqr(eVal) < vSmall) && pertI < 10)
{
WarningInFunction
<< "No eigenValues found, shape may have symmetry, "
<< "perturbing inertia tensor diagonal" << endl;
J.xx() *= 1.0 + small*rand.scalar01();
J.yy() *= 1.0 + small*rand.scalar01();
J.zz() *= 1.0 + small*rand.scalar01();
eVal = eigenValues(J);
eVec = eigenVectors(J);
pertI++;
}
bool showTransform = true;
if
(
(mag(eVec.x() ^ eVec.y()) > (1.0 - small))
&& (mag(eVec.y() ^ eVec.z()) > (1.0 - small))
&& (mag(eVec.z() ^ eVec.x()) > (1.0 - small))
)
{
// Make the eigenvectors a right handed orthogonal triplet
eVec = tensor
(
eVec.x(),
eVec.y(),
eVec.z() * sign((eVec.x() ^ eVec.y()) & eVec.z())
);
// Finding the most natural transformation. Using Lists
// rather than tensors to allow indexed permutation.
// Cartesian basis vectors - right handed orthogonal triplet
List<vector> cartesian(3);
cartesian[0] = vector(1, 0, 0);
cartesian[1] = vector(0, 1, 0);
cartesian[2] = vector(0, 0, 1);
// Principal axis basis vectors - right handed orthogonal
// triplet
List<vector> principal(3);
principal[0] = eVec.x();
principal[1] = eVec.y();
principal[2] = eVec.z();
scalar maxMagDotProduct = -great;
// Matching axis indices, first: cartesian, second:principal
Pair<label> match(-1, -1);
forAll(cartesian, cI)
{
forAll(principal, pI)
{
scalar magDotProduct = mag(cartesian[cI] & principal[pI]);
if (magDotProduct > maxMagDotProduct)
{
maxMagDotProduct = magDotProduct;
match.first() = cI;
match.second() = pI;
}
}
}
scalar sense = sign
(
cartesian[match.first()] & principal[match.second()]
);
if (sense < 0)
{
// Invert the best match direction and swap the order of
// the other two vectors
List<vector> tPrincipal = principal;
tPrincipal[match.second()] *= -1;
tPrincipal[(match.second() + 1) % 3] =
principal[(match.second() + 2) % 3];
tPrincipal[(match.second() + 2) % 3] =
principal[(match.second() + 1) % 3];
principal = tPrincipal;
vector tEVal = eVal;
tEVal[(match.second() + 1) % 3] = eVal[(match.second() + 2) % 3];
tEVal[(match.second() + 2) % 3] = eVal[(match.second() + 1) % 3];
eVal = tEVal;
}
label permutationDelta = match.second() - match.first();
if (permutationDelta != 0)
{
// Add 3 to the permutationDelta to avoid negative indices
permutationDelta += 3;
List<vector> tPrincipal = principal;
vector tEVal = eVal;
for (label i = 0; i < 3; i++)
{
tPrincipal[i] = principal[(i + permutationDelta) % 3];
tEVal[i] = eVal[(i + permutationDelta) % 3];
}
principal = tPrincipal;
eVal = tEVal;
}
label matchedAlready = match.first();
match =Pair<label>(-1, -1);
maxMagDotProduct = -great;
forAll(cartesian, cI)
{
if (cI == matchedAlready)
{
continue;
}
forAll(principal, pI)
{
if (pI == matchedAlready)
{
continue;
}
scalar magDotProduct = mag(cartesian[cI] & principal[pI]);
if (magDotProduct > maxMagDotProduct)
{
maxMagDotProduct = magDotProduct;
match.first() = cI;
match.second() = pI;
}
}
}
sense = sign
(
cartesian[match.first()] & principal[match.second()]
);
if (sense < 0 || (match.second() - match.first()) != 0)
{
principal[match.second()] *= -1;
List<vector> tPrincipal = principal;
tPrincipal[(matchedAlready + 1) % 3] =
principal[(matchedAlready + 2) % 3]*-sense;
tPrincipal[(matchedAlready + 2) % 3] =
principal[(matchedAlready + 1) % 3]*-sense;
principal = tPrincipal;
vector tEVal = eVal;
tEVal[(matchedAlready + 1) % 3] = eVal[(matchedAlready + 2) % 3];
tEVal[(matchedAlready + 2) % 3] = eVal[(matchedAlready + 1) % 3];
eVal = tEVal;
}
eVec = tensor(principal[0], principal[1], principal[2]);
// {
// tensor R = rotationTensor(vector(1, 0, 0), eVec.x());
// R = rotationTensor(R & vector(0, 1, 0), eVec.y()) & R;
// Info<< "R = " << nl << R << endl;
// Info<< "R - eVec.T() " << R - eVec.T() << endl;
// }
}
else
{
WarningInFunction
<< "Non-unique eigenvectors, cannot compute transformation "
<< "from Cartesian axes" << endl;
showTransform = false;
}
// calculate the total surface area
scalar surfaceArea = 0;
forAll(surf, facei)
{
const labelledTri& f = surf[facei];
if (f[0] == f[1] || f[0] == f[2] || f[1] == f[2])
{
WarningInFunction
<< "Illegal triangle " << facei << " vertices " << f
<< " coords " << f.points(surf.points()) << endl;
}
else
{
surfaceArea += triPointRef
(
surf.points()[f[0]],
surf.points()[f[1]],
surf.points()[f[2]]
).mag();
}
}
Info<< nl << setprecision(12)
<< "Density: " << density << nl
<< "Mass: " << m << nl
<< "Centre of mass: " << cM << nl
<< "Surface area: " << surfaceArea << nl
<< "Inertia tensor around centre of mass: " << nl << J << nl
<< "eigenValues (principal moments): " << eVal << nl
<< "eigenVectors (principal axes): " << nl
<< eVec.x() << nl << eVec.y() << nl << eVec.z() << endl;
if (showTransform)
{
Info<< "Transform tensor from reference state (orientation):" << nl
<< eVec.T() << nl
<< "Rotation tensor required to transform "
"from the body reference frame to the global "
"reference frame, i.e.:" << nl
<< "globalVector = orientation & bodyLocalVector"
<< endl;
Info<< nl
<< "Entries for sixDoFRigidBodyDisplacement boundary condition:"
<< nl
<< " mass " << m << token::END_STATEMENT << nl
<< " centreOfMass " << cM << token::END_STATEMENT << nl
<< " momentOfInertia " << eVal << token::END_STATEMENT << nl
<< " orientation " << eVec.T() << token::END_STATEMENT
<< endl;
}
if (calcAroundRefPt)
{
Info<< nl << "Inertia tensor relative to " << refPt << ": " << nl
<< momentOfInertia::applyParallelAxisTheorem(m, cM, J, refPt)
<< endl;
}
OFstream str("axes.obj");
Info<< nl << "Writing scaled principal axes at centre of mass of "
<< surfFileName << " to " << str.name() << endl;
scalar scale = mag(cM - surf.points()[0])/eVal.component(findMin(eVal));
meshTools::writeOBJ(str, cM);
meshTools::writeOBJ(str, cM + scale*eVal.x()*eVec.x());
meshTools::writeOBJ(str, cM + scale*eVal.y()*eVec.y());
meshTools::writeOBJ(str, cM + scale*eVal.z()*eVec.z());
for (label i = 1; i < 4; i++)
{
str << "l " << 1 << ' ' << i + 1 << endl;
}
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //