Files
OpenFOAM-6/src/fvOptions/sources/derived/rotorDiskSource/rotorDiskSource.C
Henry Weller f83975a701 functionObjects: Moved into the functionObjects namespace and rationalized and simplified failable construction
Rather than requiring each functionObject to handle failed construction
internally (using the active_ flag) the static member function "viable"
is provided which returns true if construction of the functionObject is
likely to be successful.  Failed construction is then handled by the
wrapper-class which constructs the functionObject,
e.g. "OutputFilterFunctionObject".
2016-05-02 16:28:24 +01:00

637 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "rotorDiskSource.H"
#include "addToRunTimeSelectionTable.H"
#include "trimModel.H"
#include "fvMatrices.H"
#include "geometricOneField.H"
#include "syncTools.H"
using namespace Foam::constant;
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
defineTypeNameAndDebug(rotorDiskSource, 0);
addToRunTimeSelectionTable(option, rotorDiskSource, dictionary);
}
template<> const char* NamedEnum<fv::rotorDiskSource::geometryModeType, 2>::
names[] =
{
"auto",
"specified"
};
const NamedEnum<fv::rotorDiskSource::geometryModeType, 2>
fv::rotorDiskSource::geometryModeTypeNames_;
template<> const char* NamedEnum<fv::rotorDiskSource::inletFlowType, 3>::
names[] =
{
"fixed",
"surfaceNormal",
"local"
};
const NamedEnum<fv::rotorDiskSource::inletFlowType, 3>
fv::rotorDiskSource::inletFlowTypeNames_;
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::fv::rotorDiskSource::checkData()
{
// Set inflow type
switch (selectionMode())
{
case smCellSet:
case smCellZone:
case smAll:
{
// Set the profile ID for each blade section
profiles_.connectBlades(blade_.profileName(), blade_.profileID());
switch (inletFlow_)
{
case ifFixed:
{
coeffs_.lookup("inletVelocity") >> inletVelocity_;
break;
}
case ifSurfaceNormal:
{
scalar UIn
(
readScalar(coeffs_.lookup("inletNormalVelocity"))
);
inletVelocity_ = -coordSys_.R().e3()*UIn;
break;
}
case ifLocal:
{
break;
}
default:
{
FatalErrorInFunction
<< "Unknown inlet velocity type" << abort(FatalError);
}
}
break;
}
default:
{
FatalErrorInFunction
<< "Source cannot be used with '"
<< selectionModeTypeNames_[selectionMode()]
<< "' mode. Please use one of: " << nl
<< selectionModeTypeNames_[smCellSet] << nl
<< selectionModeTypeNames_[smCellZone] << nl
<< selectionModeTypeNames_[smAll]
<< exit(FatalError);
}
}
}
void Foam::fv::rotorDiskSource::setFaceArea(vector& axis, const bool correct)
{
area_ = 0.0;
static const scalar tol = 0.8;
const label nInternalFaces = mesh_.nInternalFaces();
const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
const vectorField& Sf = mesh_.Sf();
const scalarField& magSf = mesh_.magSf();
vector n = Zero;
// Calculate cell addressing for selected cells
labelList cellAddr(mesh_.nCells(), -1);
UIndirectList<label>(cellAddr, cells_) = identity(cells_.size());
labelList nbrFaceCellAddr(mesh_.nFaces() - nInternalFaces, -1);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label nbrFacei = facei - nInternalFaces;
label own = mesh_.faceOwner()[facei];
nbrFaceCellAddr[nbrFacei] = cellAddr[own];
}
}
}
// Correct for parallel running
syncTools::swapBoundaryFaceList(mesh_, nbrFaceCellAddr);
// Add internal field contributions
for (label facei = 0; facei < nInternalFaces; facei++)
{
const label own = cellAddr[mesh_.faceOwner()[facei]];
const label nbr = cellAddr[mesh_.faceNeighbour()[facei]];
if ((own != -1) && (nbr == -1))
{
vector nf = Sf[facei]/magSf[facei];
if ((nf & axis) > tol)
{
area_[own] += magSf[facei];
n += Sf[facei];
}
}
else if ((own == -1) && (nbr != -1))
{
vector nf = Sf[facei]/magSf[facei];
if ((-nf & axis) > tol)
{
area_[nbr] += magSf[facei];
n -= Sf[facei];
}
}
}
// Add boundary contributions
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
const vectorField& Sfp = mesh_.Sf().boundaryField()[patchi];
const scalarField& magSfp = mesh_.magSf().boundaryField()[patchi];
if (pp.coupled())
{
forAll(pp, j)
{
const label facei = pp.start() + j;
const label own = cellAddr[mesh_.faceOwner()[facei]];
const label nbr = nbrFaceCellAddr[facei - nInternalFaces];
const vector nf = Sfp[j]/magSfp[j];
if ((own != -1) && (nbr == -1) && ((nf & axis) > tol))
{
area_[own] += magSfp[j];
n += Sfp[j];
}
}
}
else
{
forAll(pp, j)
{
const label facei = pp.start() + j;
const label own = cellAddr[mesh_.faceOwner()[facei]];
const vector nf = Sfp[j]/magSfp[j];
if ((own != -1) && ((nf & axis) > tol))
{
area_[own] += magSfp[j];
n += Sfp[j];
}
}
}
}
if (correct)
{
reduce(n, sumOp<vector>());
axis = n/mag(n);
}
if (debug)
{
volScalarField area
(
IOobject
(
name_ + ":area",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
dimensionedScalar("0", dimArea, 0)
);
UIndirectList<scalar>(area.primitiveField(), cells_) = area_;
Info<< type() << ": " << name_ << " writing field " << area.name()
<< endl;
area.write();
}
}
void Foam::fv::rotorDiskSource::createCoordinateSystem()
{
// Construct the local rotor co-prdinate system
vector origin(Zero);
vector axis(Zero);
vector refDir(Zero);
geometryModeType gm =
geometryModeTypeNames_.read(coeffs_.lookup("geometryMode"));
switch (gm)
{
case gmAuto:
{
// Determine rotation origin (cell volume weighted)
scalar sumV = 0.0;
const scalarField& V = mesh_.V();
const vectorField& C = mesh_.C();
forAll(cells_, i)
{
const label celli = cells_[i];
sumV += V[celli];
origin += V[celli]*C[celli];
}
reduce(origin, sumOp<vector>());
reduce(sumV, sumOp<scalar>());
origin /= sumV;
// Determine first radial vector
vector dx1(Zero);
scalar magR = -GREAT;
forAll(cells_, i)
{
const label celli = cells_[i];
vector test = C[celli] - origin;
if (mag(test) > magR)
{
dx1 = test;
magR = mag(test);
}
}
reduce(dx1, maxMagSqrOp<vector>());
magR = mag(dx1);
// Determine second radial vector and cross to determine axis
forAll(cells_, i)
{
const label celli = cells_[i];
vector dx2 = C[celli] - origin;
if (mag(dx2) > 0.5*magR)
{
axis = dx1 ^ dx2;
if (mag(axis) > SMALL)
{
break;
}
}
}
reduce(axis, maxMagSqrOp<vector>());
axis /= mag(axis);
// Correct the axis direction using a point above the rotor
{
vector pointAbove(coeffs_.lookup("pointAbove"));
vector dir = pointAbove - origin;
dir /= mag(dir);
if ((dir & axis) < 0)
{
axis *= -1.0;
}
}
coeffs_.lookup("refDirection") >> refDir;
cylindrical_.reset
(
new cylindrical
(
mesh_,
axis,
origin,
cells_
)
);
// Set the face areas and apply correction to calculated axis
// e.g. if cellZone is more than a single layer in thickness
setFaceArea(axis, true);
break;
}
case gmSpecified:
{
coeffs_.lookup("origin") >> origin;
coeffs_.lookup("axis") >> axis;
coeffs_.lookup("refDirection") >> refDir;
cylindrical_.reset
(
new cylindrical
(
mesh_,
axis,
origin,
cells_
)
);
setFaceArea(axis, false);
break;
}
default:
{
FatalErrorInFunction
<< "Unknown geometryMode " << geometryModeTypeNames_[gm]
<< ". Available geometry modes include "
<< geometryModeTypeNames_ << exit(FatalError);
}
}
coordSys_ = cylindricalCS("rotorCoordSys", origin, axis, refDir, false);
const scalar sumArea = gSum(area_);
const scalar diameter = Foam::sqrt(4.0*sumArea/mathematical::pi);
Info<< " Rotor gometry:" << nl
<< " - disk diameter = " << diameter << nl
<< " - disk area = " << sumArea << nl
<< " - origin = " << coordSys_.origin() << nl
<< " - r-axis = " << coordSys_.R().e1() << nl
<< " - psi-axis = " << coordSys_.R().e2() << nl
<< " - z-axis = " << coordSys_.R().e3() << endl;
}
void Foam::fv::rotorDiskSource::constructGeometry()
{
const vectorField& C = mesh_.C();
forAll(cells_, i)
{
if (area_[i] > ROOTVSMALL)
{
const label celli = cells_[i];
// Position in (planar) rotor co-ordinate system
x_[i] = coordSys_.localPosition(C[celli]);
// Cache max radius
rMax_ = max(rMax_, x_[i].x());
// Swept angle relative to rDir axis [radians] in range 0 -> 2*pi
scalar psi = x_[i].y();
// Blade flap angle [radians]
scalar beta =
flap_.beta0 - flap_.beta1c*cos(psi) - flap_.beta2s*sin(psi);
// Determine rotation tensor to convert from planar system into the
// rotor cone system
scalar c = cos(beta);
scalar s = sin(beta);
R_[i] = tensor(c, 0, -s, 0, 1, 0, s, 0, c);
invR_[i] = R_[i].T();
}
}
}
Foam::tmp<Foam::vectorField> Foam::fv::rotorDiskSource::inflowVelocity
(
const volVectorField& U
) const
{
switch (inletFlow_)
{
case ifFixed:
case ifSurfaceNormal:
{
return tmp<vectorField>
(
new vectorField(mesh_.nCells(), inletVelocity_)
);
break;
}
case ifLocal:
{
return U.primitiveField();
break;
}
default:
{
FatalErrorInFunction
<< "Unknown inlet flow specification" << abort(FatalError);
}
}
return tmp<vectorField>(new vectorField(mesh_.nCells(), Zero));
}
// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //
Foam::fv::rotorDiskSource::rotorDiskSource
(
const word& name,
const word& modelType,
const dictionary& dict,
const fvMesh& mesh
)
:
cellSetOption(name, modelType, dict, mesh),
rhoRef_(1.0),
omega_(0.0),
nBlades_(0),
inletFlow_(ifLocal),
inletVelocity_(Zero),
tipEffect_(1.0),
flap_(),
x_(cells_.size(), Zero),
R_(cells_.size(), I),
invR_(cells_.size(), I),
area_(cells_.size(), 0.0),
coordSys_(false),
cylindrical_(),
rMax_(0.0),
trim_(trimModel::New(*this, coeffs_)),
blade_(coeffs_.subDict("blade")),
profiles_(coeffs_.subDict("profiles"))
{
read(dict);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::fv::rotorDiskSource::~rotorDiskSource()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fv::rotorDiskSource::addSup
(
fvMatrix<vector>& eqn,
const label fieldI
)
{
volVectorField force
(
IOobject
(
name_ + ":rotorForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector
(
"zero",
eqn.dimensions()/dimVolume,
Zero
)
);
// Read the reference density for incompressible flow
coeffs_.lookup("rhoRef") >> rhoRef_;
const vectorField Uin(inflowVelocity(eqn.psi()));
trim_->correct(Uin, force);
calculate(geometricOneField(), Uin, trim_->thetag(), force);
// Add source to rhs of eqn
eqn -= force;
if (mesh_.time().outputTime())
{
force.write();
}
}
void Foam::fv::rotorDiskSource::addSup
(
const volScalarField& rho,
fvMatrix<vector>& eqn,
const label fieldI
)
{
volVectorField force
(
IOobject
(
name_ + ":rotorForce",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector
(
"zero",
eqn.dimensions()/dimVolume,
Zero
)
);
const vectorField Uin(inflowVelocity(eqn.psi()));
trim_->correct(rho, Uin, force);
calculate(rho, Uin, trim_->thetag(), force);
// Add source to rhs of eqn
eqn -= force;
if (mesh_.time().outputTime())
{
force.write();
}
}
bool Foam::fv::rotorDiskSource::read(const dictionary& dict)
{
if (cellSetOption::read(dict))
{
coeffs_.lookup("fieldNames") >> fieldNames_;
applied_.setSize(fieldNames_.size(), false);
// Read co-ordinate system/geometry invariant properties
scalar rpm(readScalar(coeffs_.lookup("rpm")));
omega_ = rpm/60.0*mathematical::twoPi;
coeffs_.lookup("nBlades") >> nBlades_;
inletFlow_ = inletFlowTypeNames_.read(coeffs_.lookup("inletFlowType"));
coeffs_.lookup("tipEffect") >> tipEffect_;
const dictionary& flapCoeffs(coeffs_.subDict("flapCoeffs"));
flapCoeffs.lookup("beta0") >> flap_.beta0;
flapCoeffs.lookup("beta1c") >> flap_.beta1c;
flapCoeffs.lookup("beta2s") >> flap_.beta2s;
flap_.beta0 = degToRad(flap_.beta0);
flap_.beta1c = degToRad(flap_.beta1c);
flap_.beta2s = degToRad(flap_.beta2s);
// Create co-ordinate system
createCoordinateSystem();
// Read co-odinate system dependent properties
checkData();
constructGeometry();
trim_->read(coeffs_);
if (debug)
{
writeField("thetag", trim_->thetag()(), true);
writeField("faceArea", area_, true);
}
return true;
}
else
{
return false;
}
}
// ************************************************************************* //