Files
OpenFOAM-6/applications/test/syncTools/Test-syncTools.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

620 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
syncToolsTest
Description
Test some functionality in syncTools.
\*---------------------------------------------------------------------------*/
#include "syncTools.H"
#include "argList.H"
#include "polyMesh.H"
#include "Time.H"
#include "Random.H"
#include "PackedList.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void testPackedList(const polyMesh& mesh, Random& rndGen)
{
Info<< nl << "Testing PackedList synchronisation." << endl;
{
PackedList<3> bits(mesh.nEdges());
forAll(bits, i)
{
bits.set(i, rndGen.integer(0,3));
}
labelList edgeValues(mesh.nEdges());
forAll(bits, i)
{
edgeValues[i] = bits.get(i);
}
PackedList<3> maxBits(bits);
labelList maxEdgeValues(edgeValues);
syncTools::syncEdgeList(mesh, bits, minEqOp<unsigned int>(), 0);
syncTools::syncEdgeList(mesh, edgeValues, minEqOp<label>(), 0);
syncTools::syncEdgeList(mesh, maxBits, maxEqOp<unsigned int>(), 0);
syncTools::syncEdgeList
(
mesh,
maxEdgeValues,
maxEqOp<label>(),
0
);
forAll(bits, i)
{
if
(
edgeValues[i] != label(bits.get(i))
|| maxEdgeValues[i] != label(maxBits.get(i))
)
{
FatalErrorInFunction
<< "edge:" << i
<< " minlabel:" << edgeValues[i]
<< " minbits:" << bits.get(i)
<< " maxLabel:" << maxEdgeValues[i]
<< " maxBits:" << maxBits.get(i)
<< exit(FatalError);
}
}
}
{
PackedList<3> bits(mesh.nPoints());
forAll(bits, i)
{
bits.set(i, rndGen.integer(0,3));
}
labelList pointValues(mesh.nPoints());
forAll(bits, i)
{
pointValues[i] = bits.get(i);
}
PackedList<3> maxBits(bits);
labelList maxPointValues(pointValues);
syncTools::syncPointList(mesh, bits, minEqOp<unsigned int>(), 0);
syncTools::syncPointList(mesh, pointValues, minEqOp<label>(), 0);
syncTools::syncPointList(mesh, maxBits, maxEqOp<unsigned int>(), 0);
syncTools::syncPointList
(
mesh,
maxPointValues,
maxEqOp<label>(),
0
);
forAll(bits, i)
{
if
(
pointValues[i] != label(bits.get(i))
|| maxPointValues[i] != label(maxBits.get(i))
)
{
FatalErrorInFunction
<< "point:" << i
<< " at:" << mesh.points()[i]
<< " minlabel:" << pointValues[i]
<< " minbits:" << bits.get(i)
<< " maxLabel:" << maxPointValues[i]
<< " maxBits:" << maxBits.get(i)
<< exit(FatalError);
}
}
}
{
PackedList<3> bits(mesh.nFaces());
forAll(bits, facei)
{
bits.set(facei, rndGen.integer(0,3));
}
labelList faceValues(mesh.nFaces());
forAll(bits, facei)
{
faceValues[facei] = bits.get(facei);
}
PackedList<3> maxBits(bits);
labelList maxFaceValues(faceValues);
syncTools::syncFaceList(mesh, bits, minEqOp<unsigned int>());
syncTools::syncFaceList(mesh, faceValues, minEqOp<label>());
syncTools::syncFaceList(mesh, maxBits, maxEqOp<unsigned int>());
syncTools::syncFaceList(mesh, maxFaceValues, maxEqOp<label>());
forAll(bits, facei)
{
if
(
faceValues[facei] != label(bits.get(facei))
|| maxFaceValues[facei] != label(maxBits.get(facei))
)
{
FatalErrorInFunction
<< "face:" << facei
<< " minlabel:" << faceValues[facei]
<< " minbits:" << bits.get(facei)
<< " maxLabel:" << maxFaceValues[facei]
<< " maxBits:" << maxBits.get(facei)
<< exit(FatalError);
}
}
}
}
void testSparseData(const polyMesh& mesh, Random& rndGen)
{
Info<< nl << "Testing Map synchronisation." << endl;
WarningInFunction
<< "Position test of sparse data only correct for cases without cyclics"
<< " with shared points." << endl;
primitivePatch allBoundary
(
SubList<face>
(
mesh.faces(),
mesh.nFaces()-mesh.nInternalFaces(),
mesh.nInternalFaces()
),
mesh.points()
);
const pointField& localPoints = allBoundary.localPoints();
// Point data
// ~~~~~~~~~~
{
// Create some data. Use slightly perturbed positions.
Map<point> sparseData;
pointField fullData(mesh.nPoints(), point(great, great, great));
forAll(localPoints, i)
{
const point pt = localPoints[i] + 1e-4*rndGen.vector01();
label meshPointi = allBoundary.meshPoints()[i];
sparseData.insert(meshPointi, pt);
fullData[meshPointi] = pt;
}
//Pout<< "sparseData:" << sparseData << endl;
syncTools::syncPointMap
(
mesh,
sparseData,
minMagSqrEqOp<point>()
// true // apply separation
);
syncTools::syncPointList
(
mesh,
fullData,
minMagSqrEqOp<point>(),
point(great, great, great)
// true // apply separation
);
// Compare.
// 1. Is all fullData also present in sparseData and same value
forAll(fullData, meshPointi)
{
const point& fullPt = fullData[meshPointi];
if (fullPt != point(great, great, great))
{
const point& sparsePt = sparseData[meshPointi];
if (fullPt != sparsePt)
{
FatalErrorInFunction
<< "point:" << meshPointi
<< " full:" << fullPt
<< " sparse:" << sparsePt
<< exit(FatalError);
}
}
}
// 2. Does sparseData contain more?
forAllConstIter(Map<point>, sparseData, iter)
{
const point& sparsePt = iter();
label meshPointi = iter.key();
const point& fullPt = fullData[meshPointi];
if (fullPt != sparsePt)
{
FatalErrorInFunction
<< "point:" << meshPointi
<< " full:" << fullPt
<< " sparse:" << sparsePt
<< exit(FatalError);
}
}
}
// Edge data
// ~~~~~~~~~
{
// Create some data. Use slightly perturbed positions.
EdgeMap<point> sparseData;
pointField fullData(mesh.nEdges(), point(great, great, great));
const edgeList& edges = allBoundary.edges();
const labelList meshEdges = allBoundary.meshEdges
(
mesh.edges(),
mesh.pointEdges()
);
forAll(edges, i)
{
const edge& e = edges[i];
const point pt = e.centre(localPoints) + 1e-4*rndGen.vector01();
label meshEdgeI = meshEdges[i];
sparseData.insert(mesh.edges()[meshEdgeI], pt);
fullData[meshEdgeI] = pt;
}
//Pout<< "sparseData:" << sparseData << endl;
syncTools::syncEdgeMap
(
mesh,
sparseData,
minMagSqrEqOp<point>()
);
syncTools::syncEdgeList
(
mesh,
fullData,
minMagSqrEqOp<point>(),
point(great, great, great)
);
// Compare.
// 1. Is all fullData also present in sparseData and same value
forAll(fullData, meshEdgeI)
{
const point& fullPt = fullData[meshEdgeI];
if (fullPt != point(great, great, great))
{
const point& sparsePt = sparseData[mesh.edges()[meshEdgeI]];
if (fullPt != sparsePt)
{
FatalErrorInFunction
<< "edge:" << meshEdgeI
<< " points:" << mesh.edges()[meshEdgeI]
<< " full:" << fullPt
<< " sparse:" << sparsePt
<< exit(FatalError);
}
}
}
// 2. Does sparseData contain more?
forAll(fullData, meshEdgeI)
{
const edge& e = mesh.edges()[meshEdgeI];
EdgeMap<point>::const_iterator iter = sparseData.find(e);
if (iter != sparseData.end())
{
const point& sparsePt = iter();
const point& fullPt = fullData[meshEdgeI];
if (fullPt != sparsePt)
{
FatalErrorInFunction
<< "Extra edge:" << meshEdgeI
<< " points:" << mesh.edges()[meshEdgeI]
<< " full:" << fullPt
<< " sparse:" << sparsePt
<< exit(FatalError);
}
}
}
}
}
void testPointSync(const polyMesh& mesh, Random& rndGen)
{
Info<< nl << "Testing point-wise data synchronisation." << endl;
// Test position.
{
pointField syncedPoints(mesh.points());
syncTools::syncPointPositions
(
mesh,
syncedPoints,
minMagSqrEqOp<point>(),
point(great, great, great)
);
forAll(syncedPoints, pointi)
{
if (mag(syncedPoints[pointi] - mesh.points()[pointi]) > small)
{
FatalErrorInFunction
<< "Point " << pointi
<< " original location " << mesh.points()[pointi]
<< " synced location " << syncedPoints[pointi]
<< exit(FatalError);
}
}
}
// Test masterPoints
{
labelList nMasters(mesh.nPoints(), 0);
PackedBoolList isMasterPoint(syncTools::getMasterPoints(mesh));
forAll(isMasterPoint, pointi)
{
if (isMasterPoint[pointi])
{
nMasters[pointi] = 1;
}
}
syncTools::syncPointList
(
mesh,
nMasters,
plusEqOp<label>(),
0
);
forAll(nMasters, pointi)
{
if (nMasters[pointi] != 1)
{
WarningInFunction
<< "Point " << pointi
<< " original location " << mesh.points()[pointi]
<< " has " << nMasters[pointi]
<< " masters."
<< endl;
}
}
}
}
void testEdgeSync(const polyMesh& mesh, Random& rndGen)
{
Info<< nl << "Testing edge-wise data synchronisation." << endl;
const edgeList& edges = mesh.edges();
// Test position.
{
pointField syncedMids(edges.size());
forAll(syncedMids, edgeI)
{
syncedMids[edgeI] = edges[edgeI].centre(mesh.points());
}
syncTools::syncEdgePositions
(
mesh,
syncedMids,
minMagSqrEqOp<point>(),
point(great, great, great)
);
forAll(syncedMids, edgeI)
{
point eMid = edges[edgeI].centre(mesh.points());
if (mag(syncedMids[edgeI] - eMid) > small)
{
FatalErrorInFunction
<< "Edge " << edgeI
<< " original midpoint " << eMid
<< " synced location " << syncedMids[edgeI]
<< exit(FatalError);
}
}
}
// Test masterEdges
{
labelList nMasters(edges.size(), 0);
PackedBoolList isMasterEdge(syncTools::getMasterEdges(mesh));
forAll(isMasterEdge, edgeI)
{
if (isMasterEdge[edgeI])
{
nMasters[edgeI] = 1;
}
}
syncTools::syncEdgeList
(
mesh,
nMasters,
plusEqOp<label>(),
0
);
forAll(nMasters, edgeI)
{
if (nMasters[edgeI] != 1)
{
const edge& e = edges[edgeI];
WarningInFunction
<< "Edge " << edgeI
<< " at:" << mesh.points()[e[0]] << mesh.points()[e[1]]
<< " has " << nMasters[edgeI]
<< " masters."
<< endl;
}
}
}
}
void testFaceSync(const polyMesh& mesh, Random& rndGen)
{
Info<< nl << "Testing face-wise data synchronisation." << endl;
// Test position.
{
pointField syncedFc(mesh.faceCentres());
syncTools::syncFacePositions
(
mesh,
syncedFc,
maxMagSqrEqOp<point>()
);
forAll(syncedFc, facei)
{
if (mag(syncedFc[facei] - mesh.faceCentres()[facei]) > small)
{
FatalErrorInFunction
<< "Face " << facei
<< " original centre " << mesh.faceCentres()[facei]
<< " synced centre " << syncedFc[facei]
<< exit(FatalError);
}
}
}
// Test masterFaces
{
labelList nMasters(mesh.nFaces(), 0);
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh));
forAll(isMasterFace, facei)
{
if (isMasterFace[facei])
{
nMasters[facei] = 1;
}
}
syncTools::syncFaceList
(
mesh,
nMasters,
plusEqOp<label>()
);
forAll(nMasters, facei)
{
if (nMasters[facei] != 1)
{
FatalErrorInFunction
<< "Face " << facei
<< " centre " << mesh.faceCentres()[facei]
<< " has " << nMasters[facei]
<< " masters."
<< exit(FatalError);
}
}
}
}
// Main program:
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createPolyMesh.H"
Random rndGen(5341*(Pstream::myProcNo()+1));
// Face sync
testFaceSync(mesh, rndGen);
// Edge sync
testEdgeSync(mesh, rndGen);
// Point sync
testPointSync(mesh, rndGen);
// PackedList synchronisation
testPackedList(mesh, rndGen);
// Sparse synchronisation
testSparseData(mesh, rndGen);
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //