Files
OpenFOAM-6/src/OpenFOAM/algorithms/indexedOctree/treeDataCell.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

315 lines
6.9 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "treeDataCell.H"
#include "indexedOctree.H"
#include "polyMesh.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(treeDataCell, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::treeBoundBox Foam::treeDataCell::calcCellBb(const label celli) const
{
const cellList& cells = mesh_.cells();
const faceList& faces = mesh_.faces();
const pointField& points = mesh_.points();
treeBoundBox cellBb
(
vector(great, great, great),
vector(-great, -great, -great)
);
const cell& cFaces = cells[celli];
forAll(cFaces, cFacei)
{
const face& f = faces[cFaces[cFacei]];
forAll(f, fp)
{
const point& p = points[f[fp]];
cellBb.min() = min(cellBb.min(), p);
cellBb.max() = max(cellBb.max(), p);
}
}
return cellBb;
}
void Foam::treeDataCell::update()
{
if (cacheBb_)
{
bbs_.setSize(cellLabels_.size());
forAll(cellLabels_, i)
{
bbs_[i] = calcCellBb(cellLabels_[i]);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
const labelUList& cellLabels,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(cellLabels),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
const Xfer<labelList>& cellLabels,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(cellLabels),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(identity(mesh_.nCells())),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::findNearestOp::findNearestOp
(
const indexedOctree<treeDataCell>& tree
)
:
tree_(tree)
{}
Foam::treeDataCell::findIntersectOp::findIntersectOp
(
const indexedOctree<treeDataCell>& tree
)
:
tree_(tree)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::pointField Foam::treeDataCell::shapePoints() const
{
pointField cc(cellLabels_.size());
forAll(cellLabels_, i)
{
cc[i] = mesh_.cellCentres()[cellLabels_[i]];
}
return cc;
}
bool Foam::treeDataCell::overlaps
(
const label index,
const treeBoundBox& cubeBb
) const
{
if (cacheBb_)
{
return cubeBb.overlaps(bbs_[index]);
}
else
{
return cubeBb.overlaps(calcCellBb(cellLabels_[index]));
}
}
bool Foam::treeDataCell::contains
(
const label index,
const point& sample
) const
{
return mesh_.pointInCell(sample, cellLabels_[index], decompMode_);
}
void Foam::treeDataCell::findNearestOp::operator()
(
const labelUList& indices,
const point& sample,
scalar& nearestDistSqr,
label& minIndex,
point& nearestPoint
) const
{
const treeDataCell& shape = tree_.shapes();
forAll(indices, i)
{
label index = indices[i];
label celli = shape.cellLabels()[index];
scalar distSqr = magSqr(sample - shape.mesh().cellCentres()[celli]);
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = shape.mesh().cellCentres()[celli];
}
}
}
void Foam::treeDataCell::findNearestOp::operator()
(
const labelUList& indices,
const linePointRef& ln,
treeBoundBox& tightest,
label& minIndex,
point& linePoint,
point& nearestPoint
) const
{
NotImplemented;
}
bool Foam::treeDataCell::findIntersectOp::operator()
(
const label index,
const point& start,
const point& end,
point& intersectionPoint
) const
{
const treeDataCell& shape = tree_.shapes();
// Do quick rejection test
if (shape.cacheBb_)
{
const treeBoundBox& cellBb = shape.bbs_[index];
if ((cellBb.posBits(start) & cellBb.posBits(end)) != 0)
{
// start and end in same block outside of cellBb.
return false;
}
}
else
{
const treeBoundBox cellBb = shape.calcCellBb(shape.cellLabels_[index]);
if ((cellBb.posBits(start) & cellBb.posBits(end)) != 0)
{
// start and end in same block outside of cellBb.
return false;
}
}
// Do intersection with all faces of cell
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Disable picking up intersections behind us.
scalar oldTol = intersection::setPlanarTol(0.0);
const cell& cFaces = shape.mesh_.cells()[shape.cellLabels_[index]];
const vector dir(end - start);
scalar minDistSqr = magSqr(dir);
bool hasMin = false;
forAll(cFaces, i)
{
const face& f = shape.mesh_.faces()[cFaces[i]];
pointHit inter = f.ray
(
start,
dir,
shape.mesh_.points(),
intersection::HALF_RAY
);
if (inter.hit() && sqr(inter.distance()) <= minDistSqr)
{
// Note: no extra test on whether intersection is in front of us
// since using half_ray AND zero tolerance. (note that tolerance
// is used to look behind us)
minDistSqr = sqr(inter.distance());
intersectionPoint = inter.hitPoint();
hasMin = true;
}
}
// Restore picking tolerance
intersection::setPlanarTol(oldTol);
return hasMin;
}
// ************************************************************************* //