ParaView-5.0.1: Added the source-tree to ThirdParty-dev and patched as described in the README file

Resolves bug-report http://bugs.openfoam.org/view.php?id=2098
This commit is contained in:
Henry Weller
2016-05-30 21:20:56 +01:00
parent 1cce60aa78
commit eba760a6d6
24640 changed files with 6366069 additions and 0 deletions

View File

@ -0,0 +1,19 @@
cmake_minimum_required(VERSION 2.8.5 FATAL_ERROR)
if(POLICY CMP0025)
cmake_policy(SET CMP0025 NEW) # CMake 3.0
endif()
if(POLICY CMP0053)
cmake_policy(SET CMP0053 NEW) # CMake 3.1
endif()
PROJECT (Step6)
find_package(VTK COMPONENTS
vtkFiltersSources
vtkInteractionWidgets
vtkRendering${VTK_RENDERING_BACKEND}
)
include(${VTK_USE_FILE})
add_executable(Cone6 MACOSX_BUNDLE Cone6.cxx)
target_link_libraries(Cone6 ${VTK_LIBRARIES})

View File

@ -0,0 +1,183 @@
/*=========================================================================
Program: Visualization Toolkit
Module: Cone6.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//
// This example introduces 3D widgets. 3D widgets take advantage of the
// event/observer design pattern introduced previously. They typically
// have a particular representation in the scene which can be interactively
// selected and manipulated using the mouse and keyboard. As the widgets
// are manipulated, they in turn invoke events such as StartInteractionEvent,
// InteractionEvent, and EndInteractionEvent which can be used to manipulate
// the scene that the widget is embedded in. 3D widgets work in the context
// of the event loop which was set up in the previous example.
//
// Note: there are more 3D widget examples in VTK/Examples/GUI/.
//
// First include the required header files for the VTK classes we are using.
#include "vtkConeSource.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkCamera.h"
#include "vtkActor.h"
#include "vtkRenderer.h"
#include "vtkCommand.h"
#include "vtkBoxWidget.h"
#include "vtkTransform.h"
#include "vtkInteractorStyleTrackballCamera.h"
//
// Similar to Cone2.cxx, we define a callback for interaction.
//
class vtkMyCallback : public vtkCommand
{
public:
static vtkMyCallback *New()
{ return new vtkMyCallback; }
virtual void Execute(vtkObject *caller, unsigned long, void*)
{
vtkTransform *t = vtkTransform::New();
vtkBoxWidget *widget = reinterpret_cast<vtkBoxWidget*>(caller);
widget->GetTransform(t);
widget->GetProp3D()->SetUserTransform(t);
t->Delete();
}
};
int main()
{
//
// Next we create an instance of vtkConeSource and set some of its
// properties. The instance of vtkConeSource "cone" is part of a
// visualization pipeline (it is a source process object); it produces data
// (output type is vtkPolyData) which other filters may process.
//
vtkConeSource *cone = vtkConeSource::New();
cone->SetHeight( 3.0 );
cone->SetRadius( 1.0 );
cone->SetResolution( 10 );
//
// In this example we terminate the pipeline with a mapper process object.
// (Intermediate filters such as vtkShrinkPolyData could be inserted in
// between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We
// connect the output of the cone souece to the input of this mapper.
//
vtkPolyDataMapper *coneMapper = vtkPolyDataMapper::New();
coneMapper->SetInputConnection( cone->GetOutputPort() );
//
// Create an actor to represent the cone. The actor orchestrates rendering
// of the mapper's graphics primitives. An actor also refers to properties
// via a vtkProperty instance, and includes an internal transformation
// matrix. We set this actor's mapper to be coneMapper which we created
// above.
//
vtkActor *coneActor = vtkActor::New();
coneActor->SetMapper( coneMapper );
//
// Create the Renderer and assign actors to it. A renderer is like a
// viewport. It is part or all of a window on the screen and it is
// responsible for drawing the actors it has. We also set the background
// color here.
//
vtkRenderer *ren1= vtkRenderer::New();
ren1->AddActor( coneActor );
ren1->SetBackground( 0.1, 0.2, 0.4 );
//
// Finally we create the render window which will show up on the screen.
// We put our renderer into the render window using AddRenderer. We also
// set the size to be 300 pixels by 300.
//
vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->AddRenderer( ren1 );
renWin->SetSize( 300, 300 );
//
// The vtkRenderWindowInteractor class watches for events (e.g., keypress,
// mouse) in the vtkRenderWindow. These events are translated into
// event invocations that VTK understands (see VTK/Common/vtkCommand.h
// for all events that VTK processes). Then observers of these VTK
// events can process them as appropriate.
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);
//
// By default the vtkRenderWindowInteractor instantiates an instance
// of vtkInteractorStyle. vtkInteractorStyle translates a set of events
// it observes into operations on the camera, actors, and/or properties
// in the vtkRenderWindow associated with the vtkRenderWinodwInteractor.
// Here we specify a particular interactor style.
vtkInteractorStyleTrackballCamera *style =
vtkInteractorStyleTrackballCamera::New();
iren->SetInteractorStyle(style);
//
// Here we use a vtkBoxWidget to transform the underlying coneActor (by
// manipulating its transformation matrix). Many other types of widgets
// are available for use, see the documentation for more details.
//
// The SetInteractor method is how 3D widgets are associated with the render
// window interactor. Internally, SetInteractor sets up a bunch of callbacks
// using the Command/Observer mechanism (AddObserver()). The place factor
// controls the initial size of the widget with respect to the bounding box
// of the input to the widget.
vtkBoxWidget *boxWidget = vtkBoxWidget::New();
boxWidget->SetInteractor(iren);
boxWidget->SetPlaceFactor(1.25);
//
// Place the interactor initially. The input to a 3D widget is used to
// initially position and scale the widget. The EndInteractionEvent is
// observed which invokes the SelectPolygons callback.
//
boxWidget->SetProp3D(coneActor);
boxWidget->PlaceWidget();
vtkMyCallback *callback = vtkMyCallback::New();
boxWidget->AddObserver(vtkCommand::InteractionEvent, callback);
//
// Normally the user presses the "i" key to bring a 3D widget to life. Here
// we will manually enable it so it appears with the cone.
//
boxWidget->On();
//
// Start the event loop.
//
iren->Initialize();
iren->Start();
//
// Free up any objects we created. All instances in VTK are deleted by
// using the Delete() method.
//
cone->Delete();
coneMapper->Delete();
coneActor->Delete();
callback->Delete();
boxWidget->Delete();
ren1->Delete();
renWin->Delete();
iren->Delete();
style->Delete();
return 0;
}

View File

@ -0,0 +1,117 @@
#!/usr/bin/env python
#
# This example introduces 3D widgets. 3D widgets take advantage of the
# event/observer design pattern introduced previously. They typically
# have a particular representation in the scene which can be interactively
# selected and manipulated using the mouse and keyboard. As the widgets
# are manipulated, they in turn invoke events such as StartInteractionEvent,
# InteractionEvent, and EndInteractionEvent which can be used to manipulate
# the scene that the widget is embedded in. 3D widgets work in the context
# of the event loop which was set up in the previous example.
#
# Note: there are more 3D widget examples in VTK/Examples/GUI/.
#
# First we import the VTK Python package that will make available all
# of the VTK commands to Python.
import vtk
# Next we create an instance of vtkConeSource and set some of its
# properties. The instance of vtkConeSource "cone" is part of a
# visualization pipeline (it is a source process object); it produces
# data (output type is vtkPolyData) which other filters may process.
cone = vtk.vtkConeSource()
cone.SetHeight(3.0)
cone.SetRadius(1.0)
cone.SetResolution(10)
# In this example we terminate the pipeline with a mapper process object.
# (Intermediate filters such as vtkShrinkPolyData could be inserted in
# between the source and the mapper.) We create an instance of
# vtkPolyDataMapper to map the polygonal data into graphics primitives. We
# connect the output of the cone souece to the input of this mapper.
coneMapper = vtk.vtkPolyDataMapper()
coneMapper.SetInputConnection(cone.GetOutputPort())
# Create an actor to represent the cone. The actor orchestrates rendering of
# the mapper's graphics primitives. An actor also refers to properties via a
# vtkProperty instance, and includes an internal transformation matrix. We
# set this actor's mapper to be coneMapper which we created above.
coneActor = vtk.vtkActor()
coneActor.SetMapper(coneMapper)
# Create the Renderer and assign actors to it. A renderer is like a
# viewport. It is part or all of a window on the screen and it is
# responsible for drawing the actors it has. We also set the
# background color here.
ren1 = vtk.vtkRenderer()
ren1.AddActor(coneActor)
ren1.SetBackground(0.1, 0.2, 0.4)
# Finally we create the render window which will show up on the screen
# We put our renderer into the render window using AddRenderer. We
# also set the size to be 300 pixels by 300.
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren1)
renWin.SetSize(300, 300)
# The vtkRenderWindowInteractor class watches for events (e.g., keypress,
# mouse) in the vtkRenderWindow. These events are translated into
# event invocations that VTK understands (see VTK/Common/vtkCommand.h
# for all events that VTK processes). Then observers of these VTK
# events can process them as appropriate.
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# By default the vtkRenderWindowInteractor instantiates an instance
# of vtkInteractorStyle. vtkInteractorStyle translates a set of events
# it observes into operations on the camera, actors, and/or properties
# in the vtkRenderWindow associated with the vtkRenderWinodwInteractor.
# Here we specify a particular interactor style.
style = vtk.vtkInteractorStyleTrackballCamera()
iren.SetInteractorStyle(style)
# Here we use a vtkBoxWidget to transform the underlying coneActor (by
# manipulating its transformation matrix). Many other types of widgets
# are available for use, see the documentation for more details.
#
# The SetInteractor method is how 3D widgets are associated with the render
# window interactor. Internally, SetInteractor sets up a bunch of callbacks
# using the Command/Observer mechanism (AddObserver()). The place factor
# controls the initial size of the widget with respect to the bounding box
# of the input to the widget.
boxWidget = vtk.vtkBoxWidget()
boxWidget.SetInteractor(iren)
boxWidget.SetPlaceFactor(1.25)
# Place the interactor initially. The input to a 3D widget is used to
# initially position and scale the widget. The EndInteractionEvent is
# observed which invokes the SelectPolygons callback.
boxWidget.SetProp3D(coneActor)
boxWidget.PlaceWidget()
# Similar to Step2/Python/Cone2.py, we define a callback for
# interaction. As can be seen the callback takes two arguments. The
# first being the object that generates the event and the second
# argument the event name (which is a string).
def myCallback(widget, event_string):
t = vtk.vtkTransform()
boxWidget.GetTransform(t)
boxWidget.GetProp3D().SetUserTransform(t)
# Now for every interaction event that is generated by the boxWidget,
# call our callback function.
boxWidget.AddObserver("InteractionEvent", myCallback)
# Normally the user presses the "i" key to bring a 3D widget to
# life. Here we will manually enable it so it appears with the cone.
boxWidget.On()
# Start the event loop.
iren.Initialize()
iren.Start()
# There is no explicit need to free any objects at this point.
# Once Python exits, memory is automatically freed.

View File

@ -0,0 +1,148 @@
#
# This example introduces 3D widgets. 3D widgets take advantage of the
# event/observer design pattern introduced previously. They typically
# have a particular representation in the scene which can be interactively
# selected and manipulated using the mouse and keyboard. As the widgets
# are manipulated, they in turn invoke events such as StartInteractionEvent,
# InteractionEvent, and EndInteractionEvent which can be used to manipulate
# the scene that the widget is embedded in. 3D widgets work in the context
# of the event loop which was set up in the previous example.
#
# Note: there are more 3D widget examples in VTK/Examples/GUI/.
#
#
# First we include the VTK Tcl packages which will make available
# all of the VTK commands to Tcl.
#
package require vtk
#
# Next we create an instance of vtkConeSource and set some of its
# properties. The instance of vtkConeSource "cone" is part of a visualization
# pipeline (it is a source process object); it produces data (output type is
# vtkPolyData) which other filters may process.
#
vtkConeSource cone
cone SetHeight 3.0
cone SetRadius 1.0
cone SetResolution 10
#
# In this example we terminate the pipeline with a mapper process object.
# (Intermediate filters such as vtkShrinkPolyData could be inserted in
# between the source and the mapper.) We create an instance of
# vtkPolyDataMapper to map the polygonal data into graphics primitives. We
# connect the output of the cone souece to the input of this mapper.
#
vtkPolyDataMapper coneMapper
coneMapper SetInputConnection [cone GetOutputPort]
#
# Create an actor to represent the cone. The actor orchestrates rendering of
# the mapper's graphics primitives. An actor also refers to properties via a
# vtkProperty instance, and includes an internal transformation matrix. We
# set this actor's mapper to be coneMapper which we created above.
#
vtkActor coneActor
coneActor SetMapper coneMapper
#
# Create the Renderer and assign actors to it. A renderer is like a
# viewport. It is part or all of a window on the screen and it is responsible
# for drawing the actors it has. We also set the background color here.
#
vtkRenderer ren1
ren1 AddActor coneActor
ren1 SetBackground 0.1 0.2 0.4
#
# Finally we create the render window which will show up on the screen
# We put our renderer into the render window using AddRenderer. We also
# set the size to be 300 pixels by 300.
#
vtkRenderWindow renWin
renWin AddRenderer ren1
renWin SetSize 300 300
#
# The vtkRenderWindowInteractor class watches for events (e.g., keypress,
# mouse) in the vtkRenderWindow. These events are translated into
# event invocations that VTK understands (see VTK/Common/vtkCommand.h
# for all events that VTK processes). Then observers of these VTK
# events can process them as appropriate.
vtkRenderWindowInteractor iren
iren SetRenderWindow renWin
#
# By default the vtkRenderWindowInteractor instantiates an instance
# of vtkInteractorStyle. vtkInteractorStyle translates a set of events
# it observes into operations on the camera, actors, and/or properties
# in the vtkRenderWindow associated with the vtkRenderWinodwInteractor.
# Here we specify a particular interactor style.
vtkInteractorStyleTrackballCamera style
iren SetInteractorStyle style
#
# Here we use a vtkBoxWidget to transform the underlying coneActor (by
# manipulating its transformation matrix). Many other types of widgets
# are available for use, see the documentation for more details.
#
# The SetInteractor method is how 3D widgets are associated with the render
# window interactor. Internally, SetInteractor sets up a bunch of callbacks
# using the Command/Observer mechanism (AddObserver()). The place factor
# controls the initial size of the widget with respect to the bounding box
# of the input to the widget.
vtkBoxWidget boxWidget
boxWidget SetInteractor iren
boxWidget SetPlaceFactor 1.25
#
# Place the interactor initially. The input to a 3D widget is used to
# initially position and scale the widget. The EndInteractionEvent is
# observed which invokes the SelectPolygons callback.
#
boxWidget SetInputConnection [cone GetOutputPort]
boxWidget PlaceWidget
boxWidget AddObserver InteractionEvent TransformActor
#
# Normally the user presses the "i" key to bring a 3D widget to life. Here
# we will manually enable it so it appears with the cone.
#
boxWidget On
#
# We can use the vtkInteract Tcl/Tk interactor at the same time as
# the box widget.
#
iren AddObserver UserEvent {wm deiconify .vtkInteract}
#
# Initialize starts the event loop. Once the render window appears, mouse
# in the window to move the camera. If you select the box widget,
# depending on what is selected, the widget will change shape. As this
# is happening, it will invoke InteractionEvents on itself. These are
# caught by the observer which in turn invokes the Tcl proc TransformActor
# (defined below). If you do not select the box widget, then the events
# are received by the interactor style, which manipulates the camera as
# usual. It is possible to have many widgets running simultaneously, and to
# prioritize the processing of events.
#
iren Initialize
#
# Since we are in the Tcl/Tk environment, we prevent the empty "."
# window from appearing with the Tk "withdraw" command.
#
wm withdraw .
# As the box widget is interacted with, it produces a transformation
# matrix that is set on the actor.
vtkTransform t
proc TransformActor {} {
boxWidget GetTransform t
coneActor SetUserTransform t
}
iren Start