Files
ThirdParty-6/ParaView-5.0.1/Examples/Catalyst/CxxParticlePathExample/SampleScripts/particlepath.py

132 lines
5.5 KiB
Python

from paraview.simple import *
from paraview import coprocessing
outputfrequency = 1
reinjectionfrequency = 70
# ----------------------- CoProcessor definition -----------------------
def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):
class Pipeline:
# state file generated using paraview version 4.4.0-117-ge0a3d77
# ----------------------------------------------------------------
# setup the data processing pipelines
# ----------------------------------------------------------------
#### disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset()
# create a new 'Line' for seed sources
line1 = Line()
line1.Point1 = [1., 1., 30.]
line1.Point2 = [1., 64., 30.]
# create a producer from a simulation input
fullgrid_99pvtu = coprocessor.CreateProducer(datadescription, 'input')
# create a new 'ParticlePath'
# disable resetting the cache so that the particle path filter works in situ
# and only updates from previously computed information.
particlePath1 = InSituParticlePath(Input=fullgrid_99pvtu, SeedSource=line1, DisableResetCache=1)
particlePath1.SelectInputVectors = ['POINTS', 'velocity']
# don't save particle locations from previous time steps. they can take
# up a surprising amount of memory for long running simulations.
particlePath1.ClearCache = 1
# if we're starting from a restarted simulation, the following are
# used to specify the time step for the restarted simulation and
# the input for the previously advected particles to continue
# advecting them
if datadescription.GetTimeStep() != 0:
restartparticles = XMLPartitionedPolydataReader(FileName='particles_50.pvtp')
particlePath1.RestartSource = restartparticles
particlePath1.FirstTimeStep = datadescription.GetTimeStep()
particlePath1.RestartedSimulation = 1
# create a new 'Parallel PolyData Writer'
parallelPolyDataWriter1 = servermanager.writers.XMLPPolyDataWriter(Input=particlePath1)
# register the writer with coprocessor
# and provide it with information such as the filename to use,
# how frequently to write the data, etc.
coprocessor.RegisterWriter(parallelPolyDataWriter1, filename='particles_%t.pvtp', freq=outputfrequency)
return Pipeline()
class CoProcessor(coprocessing.CoProcessor):
def CreatePipeline(self, datadescription):
self.Pipeline = _CreatePipeline(self, datadescription)
coprocessor = CoProcessor()
# these are the frequencies at which the coprocessor updates. for
# particle paths this is done every time step
freqs = {'input': [1]}
coprocessor.SetUpdateFrequencies(freqs)
return coprocessor
#--------------------------------------------------------------
# Global variables that will hold the pipeline for each timestep
# Creating the CoProcessor object, doesn't actually create the ParaView pipeline.
# It will be automatically setup when coprocessor.UpdateProducers() is called the
# first time.
coprocessor = CreateCoProcessor()
#--------------------------------------------------------------
# Enable Live-Visualizaton with ParaView
coprocessor.EnableLiveVisualization(False, 1)
# ---------------------- Data Selection method ----------------------
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep"
global coprocessor
if datadescription.GetForceOutput() == True:
# We are just going to request all fields and meshes from the simulation
# code/adaptor.
for i in range(datadescription.GetNumberOfInputDescriptions()):
datadescription.GetInputDescription(i).AllFieldsOn()
datadescription.GetInputDescription(i).GenerateMeshOn()
return
# setup requests for all inputs based on the requirements of the
# pipeline.
coprocessor.LoadRequestedData(datadescription)
# ------------------------ Processing method ------------------------
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep"
global coprocessor
# Update the coprocessor by providing it the newly generated simulation data.
# If the pipeline hasn't been setup yet, this will setup the pipeline.
#if not coprocessor.__PipelineCreated:
coprocessor.UpdateProducers(datadescription)
# tell the particle path filter how far to integrate in time (i.e. our current time)
coprocessor.Pipeline.particlePath1.TerminationTime = datadescription.GetTime()
# specify reinjection frequency manually so that reinjection
# occurs based on the simulation time step to avoid restart issues since
# the particle path filter only knows how many time steps
# it has been updated. this is the same when the simulation has not been
# restarted.
timestep = datadescription.GetTimeStep()
if timestep % reinjectionfrequency == 0:
coprocessor.Pipeline.particlePath1.ForceReinjectionEveryNSteps = 1
else:
coprocessor.Pipeline.particlePath1.ForceReinjectionEveryNSteps = timestep+1
coprocessor.Pipeline.particlePath1.UpdatePipeline()
# Write output data, if appropriate.
coprocessor.WriteData(datadescription);
# Write image capture (Last arg: rescale lookup table), if appropriate.
coprocessor.WriteImages(datadescription, rescale_lookuptable=False)
# Live Visualization, if enabled.
coprocessor.DoLiveVisualization(datadescription, "localhost", 22222)