Files
ThirdParty-6/ParaView-5.0.1/VTK/Common/ExecutionModel/vtkAlgorithm.h

791 lines
31 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkAlgorithm.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkAlgorithm - Superclass for all sources, filters, and sinks in VTK.
// .SECTION Description
// vtkAlgorithm is the superclass for all sources, filters, and sinks
// in VTK. It defines a generalized interface for executing data
// processing algorithms. Pipeline connections are associated with
// input and output ports that are independent of the type of data
// passing through the connections.
//
// Instances may be used independently or within pipelines with a
// variety of architectures and update mechanisms. Pipelines are
// controlled by instances of vtkExecutive. Every vtkAlgorithm
// instance has an associated vtkExecutive when it is used in a
// pipeline. The executive is responsible for data flow.
#ifndef vtkAlgorithm_h
#define vtkAlgorithm_h
#include "vtkCommonExecutionModelModule.h" // For export macro
#include "vtkObject.h"
class vtkAbstractArray;
class vtkAlgorithmInternals;
class vtkAlgorithmOutput;
class vtkCollection;
class vtkDataArray;
class vtkDataObject;
class vtkExecutive;
class vtkInformation;
class vtkInformationInformationVectorKey;
class vtkInformationIntegerKey;
class vtkInformationStringKey;
class vtkInformationStringVectorKey;
class vtkInformationVector;
class vtkProgressObserver;
class VTKCOMMONEXECUTIONMODEL_EXPORT vtkAlgorithm : public vtkObject
{
public:
static vtkAlgorithm *New();
vtkTypeMacro(vtkAlgorithm,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Values used for setting the desired output precision for various
// algorithms. Currently, the following algorithms support changing their
// output precision: vtkAppendFilter, vtkAppendPoints, vtkContourFilter,
// vtkContourGrid, vtkCutter, vtkGridSynchronizedTemplates3D,
// vtkPolyDataNormals, vtkSynchronizedTemplatesCutter3D,
// vtkTableBasedClipDataSet, vtkThreshold, vtkTransformFilter, and
// vtkTransformPolyData.
//
// SINGLE_PRECISION - Output single-precision floating-point (i.e. float)
// DOUBLE_PRECISION - Output double-precision floating-point (i.e. double)
// DEFAULT_PRECISION - Output precision should match the input precision.
enum DesiredOutputPrecision
{
SINGLE_PRECISION,
DOUBLE_PRECISION,
DEFAULT_PRECISION
};
// Description:
// Check whether this algorithm has an assigned executive. This
// will NOT create a default executive.
int HasExecutive();
// Description:
// Get this algorithm's executive. If it has none, a default
// executive will be created.
vtkExecutive* GetExecutive();
// Description:
// Set this algorithm's executive. This algorithm is removed from
// any executive to which it has previously been assigned and then
// assigned to the given executive.
virtual void SetExecutive(vtkExecutive* executive);
// Description:
// Upstream/Downstream requests form the generalized interface
// through which executives invoke a algorithm's functionality.
// Upstream requests correspond to information flow from the
// algorithm's outputs to its inputs. Downstream requests
// correspond to information flow from the algorithm's inputs to its
// outputs.
//
// A downstream request is defined by the contents of the request
// information object. The input to the request is stored in the
// input information vector passed to ProcessRequest. The results
// of an downstream request are stored in the output information
// vector passed to ProcessRequest.
//
// An upstream request is defined by the contents of the request
// information object. The input to the request is stored in the
// output information vector passed to ProcessRequest. The results
// of an upstream request are stored in the input information vector
// passed to ProcessRequest.
//
// It returns the boolean status of the pipeline (false
// means failure).
virtual int ProcessRequest(vtkInformation* request,
vtkInformationVector** inInfo,
vtkInformationVector* outInfo);
// Description:
// Version of ProcessRequest() that is wrapped. This converts the
// collection to an array and calls the other version.
int ProcessRequest(vtkInformation* request,
vtkCollection* inInfo,
vtkInformationVector* outInfo);
// Description:
// A special version of ProcessRequest meant specifically for the
// pipeline modified time request. See
// vtkExecutive::ComputePipelineMTime() for details.
virtual int
ComputePipelineMTime(vtkInformation* request,
vtkInformationVector** inInfoVec,
vtkInformationVector* outInfoVec,
int requestFromOutputPort,
unsigned long* mtime);
// Description:
// This method gives the algorithm a chance to modify the contents of a
// request before or after (specified in the when argument) it is
// forwarded. The default implementation is empty. Returns 1 on success,
// 0 on failure. When can be either vtkExecutive::BeforeForward or
// vtkExecutive::AfterForward.
virtual int ModifyRequest(vtkInformation* request, int when);
// Description:
// Get the information object associated with an input port. There
// is one input port per kind of input to the algorithm. Each input
// port tells executives what kind of data and downstream requests
// this algorithm can handle for that input.
vtkInformation* GetInputPortInformation(int port);
// Description:
// Get the information object associated with an output port. There
// is one output port per output from the algorithm. Each output
// port tells executives what kind of upstream requests this
// algorithm can handle for that output.
vtkInformation* GetOutputPortInformation(int port);
// Description:
// Set/Get the information object associated with this algorithm.
vtkGetObjectMacro(Information, vtkInformation);
virtual void SetInformation(vtkInformation*);
// Description:
// Get the number of input ports used by the algorithm.
int GetNumberOfInputPorts();
// Description:
// Get the number of output ports provided by the algorithm.
int GetNumberOfOutputPorts();
// Description:
// Participate in garbage collection.
virtual void Register(vtkObjectBase* o);
virtual void UnRegister(vtkObjectBase* o);
// Description:
// Set/Get the AbortExecute flag for the process object. Process objects
// may handle premature termination of execution in different ways.
vtkSetMacro(AbortExecute,int);
vtkGetMacro(AbortExecute,int);
vtkBooleanMacro(AbortExecute,int);
// Description:
// Set/Get the execution progress of a process object.
vtkSetClampMacro(Progress,double,0.0,1.0);
vtkGetMacro(Progress,double);
// Description:
// Update the progress of the process object. If a ProgressMethod exists,
// executes it. Then set the Progress ivar to amount. The parameter amount
// should range between (0,1).
void UpdateProgress(double amount);
// Description:
// Set the current text message associated with the progress state.
// This may be used by a calling process/GUI.
// Note: Because SetProgressText() is called from inside RequestData()
// it does not modify the algorithm object. Algorithms are not
// allowed to modify themselves from inside RequestData().
void SetProgressText(const char* ptext);
vtkGetStringMacro(ProgressText);
// Description:
// The error code contains a possible error that occurred while
// reading or writing the file.
vtkGetMacro( ErrorCode, unsigned long );
// left public for performance since it is used in inner loops
int AbortExecute;
// Description:
// Keys used to specify input port requirements.
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_IS_OPTIONAL();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_IS_REPEATABLE();
// Description:
// \ingroup InformationKeys
static vtkInformationInformationVectorKey* INPUT_REQUIRED_FIELDS();
// Description:
// \ingroup InformationKeys
static vtkInformationStringVectorKey* INPUT_REQUIRED_DATA_TYPE();
// Description:
// \ingroup InformationKeys
static vtkInformationInformationVectorKey* INPUT_ARRAYS_TO_PROCESS();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_PORT();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_CONNECTION();
// Description:
// This key tells the executive that a particular output port
// is capable of producing an arbitrary subextent of the whole
// extent. Many image sources and readers fall into this category
// but some such as the legacy structured data readers cannot
// support this feature.
// \ingroup InformationKeys
static vtkInformationIntegerKey* CAN_PRODUCE_SUB_EXTENT();
// Description:
// Key that tells the pipeline that a particular algorithm
// can or cannot handle piece request. If a filter cannot handle
// piece requests and is asked for a piece, the executive will
// flag an error. If a structured data source cannot handle piece
// requests but can produce sub-extents (CAN_PRODUCE_SUB_EXTENT),
// the executive will use an extent translator to split the extent
// into pieces. Otherwise, if a source cannot handle piece requests,
// the executive will ask for the whole data for piece 0 and not
// execute the source for other pieces.
// \ingroup InformationKeys
static vtkInformationIntegerKey* CAN_HANDLE_PIECE_REQUEST();
// Description:
// Set the input data arrays that this algorithm will
// process. Specifically the idx array that this algorithm will process
// (starting from 0) is the array on port, connection with the specified
// association and name or attribute type (such as SCALARS). The
// fieldAssociation refers to which field in the data object the array is
// stored. See vtkDataObject::FieldAssociations for detail.
virtual void SetInputArrayToProcess(int idx, int port, int connection,
int fieldAssociation,
const char *name);
virtual void SetInputArrayToProcess(int idx, int port, int connection,
int fieldAssociation,
int fieldAttributeType);
virtual void SetInputArrayToProcess(int idx, vtkInformation *info);
// Description:
// String based versions of SetInputArrayToProcess(). Because
// fieldAssociation and fieldAttributeType are enums, they cannot be
// easily accessed from scripting language. These methods provides an
// easy and safe way of passing association and attribute type
// information. Field association is one of the following:
// @verbatim
// vtkDataObject::FIELD_ASSOCIATION_POINTS
// vtkDataObject::FIELD_ASSOCIATION_CELLS
// vtkDataObject::FIELD_ASSOCIATION_NONE
// vtkDataObject::FIELD_ASSOCIATION_POINTS_THEN_CELLS
// @endverbatim
// Attribute type is one of the following:
// @verbatim
// vtkDataSetAttributes::SCALARS
// vtkDataSetAttributes::VECTORS
// vtkDataSetAttributes::NORMALS
// vtkDataSetAttributes::TCOORDS
// vtkDataSetAttributes::TENSORS
// @endverbatim
// If the last argument is not an attribute type, it is assumed to
// be an array name.
virtual void SetInputArrayToProcess(int idx, int port, int connection,
const char* fieldAssociation,
const char* attributeTypeorName);
// Description:
// Get the info object for the specified input array to this algorithm
vtkInformation *GetInputArrayInformation(int idx);
// from here down are convenience methods that really are executive methods
// Description:
// Remove all the input data.
void RemoveAllInputs();
// Description:
// Get the data object that will contain the algorithm output for
// the given port.
vtkDataObject* GetOutputDataObject(int port);
// Description:
// Get the data object that will contain the algorithm input for the given
// port and given connection.
vtkDataObject *GetInputDataObject(int port,
int connection);
// Description:
// Set the connection for the given input port index. Each input
// port of a filter has a specific purpose. A port may have zero or
// more connections and the required number is specified by each
// filter. Setting the connection with this method removes all
// other connections from the port. To add more than one connection
// use AddInputConnection().
//
// The input for the connection is the output port of another
// filter, which is obtained with GetOutputPort(). Typical usage is
//
// filter2->SetInputConnection(0, filter1->GetOutputPort(0)).
virtual void SetInputConnection(int port, vtkAlgorithmOutput* input);
virtual void SetInputConnection(vtkAlgorithmOutput* input);
// Description:
// Add a connection to the given input port index. See
// SetInputConnection() for details on input connections. This
// method is the complement to RemoveInputConnection() in that it
// adds only the connection specified without affecting other
// connections. Typical usage is
//
// filter2->AddInputConnection(0, filter1->GetOutputPort(0)).
virtual void AddInputConnection(int port, vtkAlgorithmOutput* input);
virtual void AddInputConnection(vtkAlgorithmOutput* input);
// Description:
// Remove a connection from the given input port index. See
// SetInputConnection() for details on input connection. This
// method is the complement to AddInputConnection() in that it
// removes only the connection specified without affecting other
// connections. Typical usage is
//
// filter2->RemoveInputConnection(0, filter1->GetOutputPort(0)).
virtual void RemoveInputConnection(int port, vtkAlgorithmOutput* input);
// Description:
// Remove a connection given by index idx.
virtual void RemoveInputConnection(int port, int idx);
// Description:
// Removes all input connections.
virtual void RemoveAllInputConnections(int port);
// Description:
// Sets the data-object as an input on the given port index. Setting the input with
// this method removes all other connections from the port. Internally, this
// method creates a vtkTrivialProducer instance and sets that as the
// input-connection for the given port. It is safe to call this method repeatedly
// with the same input data object. The MTime of the vtkAlgorithm will not
// change unless the data object changed.
virtual void SetInputDataObject(int port, vtkDataObject* data);
virtual void SetInputDataObject(vtkDataObject* data)
{ this->SetInputDataObject(0, data); }
// Description:
// Add the data-object as an input to this given port. This will add a new
// input connection on the specified port without affecting any existing
// connections on the same input port.
virtual void AddInputDataObject(int port, vtkDataObject* data);
virtual void AddInputDataObject(vtkDataObject* data)
{ this->AddInputDataObject(0, data); }
// Description:
// Get a proxy object corresponding to the given output port of this
// algorithm. The proxy object can be passed to another algorithm's
// SetInputConnection(), AddInputConnection(), and
// RemoveInputConnection() methods to modify pipeline connectivity.
vtkAlgorithmOutput* GetOutputPort(int index);
vtkAlgorithmOutput* GetOutputPort() {
return this->GetOutputPort(0); }
// Description:
// Get the number of inputs currently connected to a port.
int GetNumberOfInputConnections(int port);
// Description:
// Get the total number of inputs for this algorithm
int GetTotalNumberOfInputConnections();
// Description:
// Get the algorithm output port connected to an input port.
vtkAlgorithmOutput* GetInputConnection(int port, int index);
// Description:
// Returns the algorithm and the output port index of
// that algorithm connected to a port-index pair.
vtkAlgorithm* GetInputAlgorithm(int port, int index, int& algPort);
// Description:
// Returns the algorithm connected to a port-index pair.
vtkAlgorithm* GetInputAlgorithm(int port, int index);
// Description:
// Equivalent to GetInputAlgorithm(0, 0).
vtkAlgorithm* GetInputAlgorithm()
{
return this->GetInputAlgorithm(0, 0);
}
// Description:
// Returns the executive associated with a particular input
// connection.
vtkExecutive* GetInputExecutive(int port, int index);
// Description:
// Equivalent to GetInputExecutive(0, 0)
vtkExecutive* GetInputExecutive()
{
return this->GetInputExecutive(0, 0);
}
// Description:
// Return the information object that is associated with
// a particular input connection. This can be used to get
// meta-data coming from the REQUEST_INFORMATION pass and set
// requests for the REQUEST_UPDATE_EXTENT pass. NOTE:
// Do not use this in any of the pipeline passes. Use
// the information objects passed as arguments instead.
vtkInformation* GetInputInformation(int port, int index);
// Description:
// Equivalent to GetInputInformation(0, 0)
vtkInformation* GetInputInformation()
{
return this->GetInputInformation(0, 0);
}
// Description:
// Return the information object that is associated with
// a particular output port. This can be used to set
// meta-data coming during the REQUEST_INFORMATION. NOTE:
// Do not use this in any of the pipeline passes. Use
// the information objects passed as arguments instead.
vtkInformation* GetOutputInformation(int port);
// Description:
// Bring this algorithm's outputs up-to-date.
virtual void Update(int port);
virtual void Update();
// Description:
// Bring the algorithm's information up-to-date.
virtual void UpdateInformation();
// Description:
// Create output object(s).
virtual void UpdateDataObject();
// Description::
// Propagate meta-data upstream.
virtual void PropagateUpdateExtent();
// Description:
// Bring this algorithm's outputs up-to-date.
virtual void UpdateWholeExtent();
// Description:
// Convenience routine to convert from a linear ordering of input
// connections to a port/connection pair.
void ConvertTotalInputToPortConnection(int ind, int& port, int& conn);
//======================================================================
//The following block of code is to support old style VTK applications. If
//you are using these calls there are better ways to do it in the new
//pipeline
//======================================================================
// Description:
// Turn release data flag on or off for all output ports.
virtual void SetReleaseDataFlag(int);
virtual int GetReleaseDataFlag();
void ReleaseDataFlagOn();
void ReleaseDataFlagOff();
//========================================================================
// Description:
// This detects when the UpdateExtent will generate no data
// This condition is satisfied when the UpdateExtent has
// zero volume (0,-1,...) or the UpdateNumberOfPieces is 0.
// The source uses this call to determine whether to call Execute.
int UpdateExtentIsEmpty(vtkInformation *pinfo, vtkDataObject *output);
int UpdateExtentIsEmpty(vtkInformation *pinfo, int extentType);
// Description:
// If the DefaultExecutivePrototype is set, a copy of it is created
// in CreateDefaultExecutive() using NewInstance().
static void SetDefaultExecutivePrototype(vtkExecutive* proto);
// Description:
// If the whole output extent is required, this method can be called to set
// the output update extent to the whole extent. This method assumes that
// the whole extent is known (that UpdateInformation has been called).
int SetUpdateExtentToWholeExtent(int port);
// Description:
// Convenience function equivalent to SetUpdateExtentToWholeExtent(0)
// This method assumes that the whole extent is known (that UpdateInformation
// has been called).
int SetUpdateExtentToWholeExtent();
// Description:
// Set the output update extent in terms of piece and ghost levels.
void SetUpdateExtent(int port,
int piece,int numPieces, int ghostLevel);
// Description:
// Convenience function equivalent to SetUpdateExtent(0, piece,
// numPieces, ghostLevel)
void SetUpdateExtent(int piece,int numPieces, int ghostLevel)
{
this->SetUpdateExtent(0, piece, numPieces, ghostLevel);
}
// Description:
// Set the output update extent for data objects that use 3D extents
void SetUpdateExtent(int port, int extent[6]);
// Description:
// Convenience function equivalent to SetUpdateExtent(0, extent)
void SetUpdateExtent(int extent[6])
{
this->SetUpdateExtent(0, extent);
}
// Description:
// These functions return the update extent for output ports that
// use 3D extents. Where port is not specified, it is assumed to
// be 0.
int* GetUpdateExtent()
{
return this->GetUpdateExtent(0);
}
int* GetUpdateExtent(int port);
void GetUpdateExtent(int& x0, int& x1, int& y0, int& y1,
int& z0, int& z1)
{
this->GetUpdateExtent(0, x0, x1, y0, y1, z0, z1);
}
void GetUpdateExtent(int port,
int& x0, int& x1, int& y0, int& y1,
int& z0, int& z1);
void GetUpdateExtent(int extent[6])
{
this->GetUpdateExtent(0, extent);
}
void GetUpdateExtent(int port, int extent[6]);
// Description:
// These functions return the update extent for output ports that
// use piece extents. Where port is not specified, it is assumed to
// be 0.
int GetUpdatePiece()
{
return this->GetUpdatePiece(0);
}
int GetUpdatePiece(int port);
int GetUpdateNumberOfPieces()
{
return this->GetUpdateNumberOfPieces(0);
}
int GetUpdateNumberOfPieces(int port);
int GetUpdateGhostLevel()
{
return this->GetUpdateGhostLevel(0);
}
int GetUpdateGhostLevel(int port);
// Description:
// If an ProgressObserver is set, the algorithm will report
// progress through it rather than directly. This means that
// it will call UpdateProgress() on the ProgressObserver rather
// than itself report it and set progress.
// This is most useful in situations where multiple threads
// are executing an algorithm at the same time and want to
// handle progress locally.
void SetProgressObserver(vtkProgressObserver*);
vtkGetObjectMacro(ProgressObserver, vtkProgressObserver);
protected:
vtkAlgorithm();
~vtkAlgorithm();
// Keys used to indicate that input/output port information has been
// filled.
static vtkInformationIntegerKey* PORT_REQUIREMENTS_FILLED();
// Arbitrary extra information associated with this algorithm
vtkInformation* Information;
// Description:
// Fill the input port information objects for this algorithm. This
// is invoked by the first call to GetInputPortInformation for each
// port so subclasses can specify what they can handle.
virtual int FillInputPortInformation(int port, vtkInformation* info);
// Description:
// Fill the output port information objects for this algorithm.
// This is invoked by the first call to GetOutputPortInformation for
// each port so subclasses can specify what they can handle.
virtual int FillOutputPortInformation(int port, vtkInformation* info);
// Description:
// Set the number of input ports used by the algorithm.
virtual void SetNumberOfInputPorts(int n);
// Description:
// Set the number of output ports provided by the algorithm.
virtual void SetNumberOfOutputPorts(int n);
// Helper methods to check input/output port index ranges.
int InputPortIndexInRange(int index, const char* action);
int OutputPortIndexInRange(int index, const char* action);
// Description:
// Get the assocition of the actual data array for the input array specified
// by idx, this is only reasonable during the REQUEST_DATA pass.
int GetInputArrayAssociation(int idx, vtkInformationVector **inputVector);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
int GetInputArrayAssociation(int idx, int connection,
vtkInformationVector **inputVector);
int GetInputArrayAssociation(int idx, vtkDataObject* input);
// Description:
// Get the actual data array for the input array specified by idx, this is
// only reasonable during the REQUEST_DATA pass
vtkDataArray *GetInputArrayToProcess(int idx,vtkInformationVector **inputVector);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkInformationVector **inputVector,
int& association);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
vtkDataArray *GetInputArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector);
vtkDataArray *GetInputArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector,
int& association);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkDataObject* input);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkDataObject* input,
int& association);
// Description:
// Get the actual data array for the input array specified by idx, this is
// only reasonable during the REQUEST_DATA pass
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,vtkInformationVector **inputVector);
vtkAbstractArray *GetInputAbstractArrayToProcess
(int idx, vtkInformationVector **inputVector, int& association);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector,
int& association);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
vtkDataObject* input);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
vtkDataObject* input,
int& association);
// Description:
// This method takes in an index (as specified in SetInputArrayToProcess)
// and a pipeline information vector. It then finds the information about
// input array idx and then uses that information to find the field
// information from the relevant field in the pifo vector (as done by
// vtkDataObject::GetActiveFieldInformation)
vtkInformation *GetInputArrayFieldInformation(int idx,
vtkInformationVector **inputVector);
// Description:
// Create a default executive.
// If the DefaultExecutivePrototype is set, a copy of it is created
// in CreateDefaultExecutive() using NewInstance().
// Otherwise, vtkStreamingDemandDrivenPipeline is created.
virtual vtkExecutive* CreateDefaultExecutive();
// Description:
// The error code contains a possible error that occurred while
// reading or writing the file.
vtkSetMacro( ErrorCode, unsigned long );
unsigned long ErrorCode;
// Progress/Update handling
double Progress;
char *ProgressText;
// Garbage collection support.
virtual void ReportReferences(vtkGarbageCollector*);
// executive methods below
// Description:
// Replace the Nth connection on the given input port. For use only
// by this class and subclasses. If this is used to store a NULL
// input then the subclass must be able to handle NULL inputs in its
// ProcessRequest method.
virtual void SetNthInputConnection(int port, int index,
vtkAlgorithmOutput* input);
// Description:
// Set the number of input connections on the given input port. For
// use only by this class and subclasses. If this is used to store
// a NULL input then the subclass must be able to handle NULL inputs
// in its ProcessRequest method.
virtual void SetNumberOfInputConnections(int port, int n);
static vtkExecutive* DefaultExecutivePrototype;
// Description:
// These methods are used by subclasses to implement methods to
// set data objects directly as input. Internally, they create
// a vtkTrivialProducer that has the data object as output and
// connect it to the algorithm.
void SetInputDataInternal(int port, vtkDataObject *input)
{ this->SetInputDataObject(port, input); }
void AddInputDataInternal(int port, vtkDataObject *input)
{ this->AddInputDataObject(port, input); }
vtkProgressObserver* ProgressObserver;
private:
vtkExecutive* Executive;
vtkInformationVector* InputPortInformation;
vtkInformationVector* OutputPortInformation;
vtkAlgorithmInternals* AlgorithmInternal;
static void ConnectionAdd(vtkAlgorithm* producer, int producerPort,
vtkAlgorithm* consumer, int consumerPort);
static void ConnectionRemove(vtkAlgorithm* producer, int producerPort,
vtkAlgorithm* consumer, int consumerPort);
static void ConnectionRemoveAllInput(vtkAlgorithm* consumer, int port);
static void ConnectionRemoveAllOutput(vtkAlgorithm* producer, int port);
private:
vtkAlgorithm(const vtkAlgorithm&); // Not implemented.
void operator=(const vtkAlgorithm&); // Not implemented.
};
#endif